The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ...Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.展开更多
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t...High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall.展开更多
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporizatio...Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method.展开更多
Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficie...Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.展开更多
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si...The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.展开更多
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u...The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.展开更多
Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and...Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPy_(n)-OA)can serve as efficient and stable SVC material at high salinity.Structural characterizations of MF@HPB-PPy_(n)-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVC materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy_(10)-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy_(10)-OA accomplishes complete salt-water separation of 10wt%brine with 3.3kgm^(-2)h^(-1)under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy_(10)-OA(2.56$m^(-2))suggests its potential application in the practical SVC technique.展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
A photovoltaic(PV)inverter is a vital component of a photovoltaic(PV)solar system.Photovoltaic(PV)inverter failure can mean a solar system that is no longer functioning.When electronic devices such as photovoltaic(PV)...A photovoltaic(PV)inverter is a vital component of a photovoltaic(PV)solar system.Photovoltaic(PV)inverter failure can mean a solar system that is no longer functioning.When electronic devices such as photovoltaic(PV)inverter devices are subjected to vapor condensation,a risk could occur.Given the amount of moisture in the air,saturation occurswhen the temperature drops to the dewpoint,and condensationmay formon surfaces.Numerical simulation with“COMSOL Software”is important for obtaining knowledge relevant to preventing condensation by using two steps.At first,the assumption was that the device’s water vapor concentration was homogeneous to evaluate the amount of liquid water accumulated on the internal walls of the photovoltaic(PV)inverter box.Second,by considering the effect of external wind velocity onmoisture transport at the air interface to evaluate water vapor transport outdoors and reduce condensation.General factorial designs are utilized for analyzing the nature of the relationship between the vapor condensation response and the variables.Reducing vapor condensation inside the solar inverter by the effect of external wind speed on diffusion as a process of transporting moister air outside the inverter box is the main solution for this problem.During the movement and assessment of the flow of water vapor,the impact of vapor condensation is reduced.The saturation period was determined by using a Boolean saturation indicator.The saturation indicator was set to 1 when saturation was detected(relative humidity greater than or equal to 1)and 0 otherwise.Calculating the flow and dispersion of moist air as a function of wind speed helped solve the problem.展开更多
Cenchrus biflorus called Karangiya in the Hausa language is an annual pastoral grass which is a valuable herbaceous fodder in dry land region in the context of climate change. However, little is known about the plant ...Cenchrus biflorus called Karangiya in the Hausa language is an annual pastoral grass which is a valuable herbaceous fodder in dry land region in the context of climate change. However, little is known about the plant water use under the effects of cut in West Africa Sahel like Niger where the plant is a multipurpose grass species. Therefore, this study investigated the impact of grazing (simulated by shoot cuts) on biomass production. Cenchrus biflorus Roxb was grown on field plots and in pots and subjected to shoot cuts at different levels (3 cm and 5 cm from soil surface). The effect of shoot cuts on drought tolerance was evaluated by assessing the response of transpiration to the diurnal variation of vapor pressure deficit (VPD). Results showed that the biomass production varied in response to shoot cuts depending on the culture system, and the level or frequency of cuts. The mean biomass production increased significantly especially in field plots for 5 cm cuts compared to those at 3 cm and the control treatment. In addition, transpiration was highly increased in response to the VPD increase. Shoot cuts significantly reduced transpiration, whatever the level, largely because they reduced leaf surface. We concluded that moderate grazing (cuts to 5cm) can improve biomass production and allow better adaptation to water deficit as they significantly reduced water loss through transpiration. The study recommends the cropping of the Cenchrus biflorus as climate solution as it performs better under water deficit for improving grazing resilience in Niger.展开更多
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ...Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.展开更多
Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.How...Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.展开更多
The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties hav...The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties have also been studied. The modification of perlite products has provided the products with anti-water property, which not only enhanced the quality of thermal insulating function, reduced the lost of heat energy, but also made the products water-proof These modified perlite products are used as ideal thermal insulating layers for the thermodynamic equipment and heat transporting conducts.展开更多
Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applicat...Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applications on substrate materials with low melting points.We report a new synthesis route for PDC coatings using initiated chemical vapor deposited poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane)(pV_3D_3) as the precurs or.We investigated the changes in siloxane moieties and the network topology,and proposed a three-stage mechanism for the thermal annealing process.The rise of the connectivity number for the structures obtained at increased annealing temperatures was found with strong correlation to the enhanced mechanical properties and thermal conductivity.Our PDC films obtained via annealing at 850℃ exhibit at least 14.6% higher hardness than prior reports for PDCs synthesized below 1100℃.Furthermore,thermal conductivity up to 1.02 W(mK)^(-1) was achieved at the annealing temperature as low as 700℃,which is on the same order of magnitude as PDCs obtained above 1100℃.Using minimum thermal conductivity models,we found that the thermal transport is dominated by diffusons in the films below the percolation of rigidity,while ultra-short mean-free path phonons contribute to the thermal conductivity of the films above the percolation threshold.The findings of this work provide new insights for the development of wear-resistant and thermally conductive PDC thin films for durable protection coatings.展开更多
Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range...Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.展开更多
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre...The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.展开更多
The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K ...The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.
基金the Indonesian Collaborative Research(RKI)2022:598/IT2/T/HK.00.01/2022Center of Volcanology and Geological Hazard Mitigation of Indonesia for the data and financial support of this research。
文摘Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.41975020 and 41975031)(Jun LI)。
文摘High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall.
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
文摘Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method.
基金supported by the National Natural Science Foundation of China(42304056)the Natural Science Foundation of Hebei Province(D2023305007)+1 种基金supported by the Basic Research Project(GP2020-017,GP2020027)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT of Korea。
文摘Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.
文摘The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.
基金supported by the National Natural Science Foundation of China(42161007)the Scientific Research Program for Higher Education Institutions of Gansu Province(2021B-081)the Natural Science Foundation of Gansu Province(22JR5RA074).
文摘The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
基金financially supported by the National Key Basic Research Program of China(grant no.2020YFA0406101)National Natural Science Foundation of China(grant nos.22171041,22071020,21901035,22271043)+1 种基金Natural Science Foundation of Jilin Province Science and Technology Department(grant nos.20230508094RC,20220101045JC)the Fundamental Research Funds for the Central Universities(grant no.2412021QD008)
文摘Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPy_(n)-OA)can serve as efficient and stable SVC material at high salinity.Structural characterizations of MF@HPB-PPy_(n)-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVC materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy_(10)-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy_(10)-OA accomplishes complete salt-water separation of 10wt%brine with 3.3kgm^(-2)h^(-1)under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy_(10)-OA(2.56$m^(-2))suggests its potential application in the practical SVC technique.
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
基金This research received funding from Project Number 13040115Code(NRC/VPRA/FSEIRPC/F05).
文摘A photovoltaic(PV)inverter is a vital component of a photovoltaic(PV)solar system.Photovoltaic(PV)inverter failure can mean a solar system that is no longer functioning.When electronic devices such as photovoltaic(PV)inverter devices are subjected to vapor condensation,a risk could occur.Given the amount of moisture in the air,saturation occurswhen the temperature drops to the dewpoint,and condensationmay formon surfaces.Numerical simulation with“COMSOL Software”is important for obtaining knowledge relevant to preventing condensation by using two steps.At first,the assumption was that the device’s water vapor concentration was homogeneous to evaluate the amount of liquid water accumulated on the internal walls of the photovoltaic(PV)inverter box.Second,by considering the effect of external wind velocity onmoisture transport at the air interface to evaluate water vapor transport outdoors and reduce condensation.General factorial designs are utilized for analyzing the nature of the relationship between the vapor condensation response and the variables.Reducing vapor condensation inside the solar inverter by the effect of external wind speed on diffusion as a process of transporting moister air outside the inverter box is the main solution for this problem.During the movement and assessment of the flow of water vapor,the impact of vapor condensation is reduced.The saturation period was determined by using a Boolean saturation indicator.The saturation indicator was set to 1 when saturation was detected(relative humidity greater than or equal to 1)and 0 otherwise.Calculating the flow and dispersion of moist air as a function of wind speed helped solve the problem.
文摘Cenchrus biflorus called Karangiya in the Hausa language is an annual pastoral grass which is a valuable herbaceous fodder in dry land region in the context of climate change. However, little is known about the plant water use under the effects of cut in West Africa Sahel like Niger where the plant is a multipurpose grass species. Therefore, this study investigated the impact of grazing (simulated by shoot cuts) on biomass production. Cenchrus biflorus Roxb was grown on field plots and in pots and subjected to shoot cuts at different levels (3 cm and 5 cm from soil surface). The effect of shoot cuts on drought tolerance was evaluated by assessing the response of transpiration to the diurnal variation of vapor pressure deficit (VPD). Results showed that the biomass production varied in response to shoot cuts depending on the culture system, and the level or frequency of cuts. The mean biomass production increased significantly especially in field plots for 5 cm cuts compared to those at 3 cm and the control treatment. In addition, transpiration was highly increased in response to the VPD increase. Shoot cuts significantly reduced transpiration, whatever the level, largely because they reduced leaf surface. We concluded that moderate grazing (cuts to 5cm) can improve biomass production and allow better adaptation to water deficit as they significantly reduced water loss through transpiration. The study recommends the cropping of the Cenchrus biflorus as climate solution as it performs better under water deficit for improving grazing resilience in Niger.
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金This research was supported by the National Natural Science Foundation of China(42161058).
文摘Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.
基金supported by the National Key Research and Development Program of China(2021YFB3701603)National Science Foundation of China(51973030,52103075)+6 种基金Shanghai Rising-Star Program(20QA1400100)Science and Technology Commission of Shanghai Municipality(20JC1414900)China Postdoctoral Science Foundation(2022M710664,2022T150111)China Postdoctoral Science Foundation(2022M710663)the Fundamental Research Funds for the Central Universities“DHU”Distinguished Young Professor Program(LZB2021001)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Solar-driven interfacial evaporation is an emerging technology for water desalination.Generally,double-layered structure with separate surface wettability properties is usually employed for evaporator construction.However,creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous.Herein,we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose(BC)fibrous network,which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways.Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers,resulting in either superhydrophilic or superhydrophobic aerogels.With this special property,single component-modified aerogels could be integrated into a double-layered evaporator for water desalination.Under 1 sun,our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m^(-2)h^(-1)under laboratory and outdoor solar conditions,respectively.Moreover,this aerogel evaporator shows unprecedented lightweight,structural robustness,long-term stability under extreme conditions,and excellent salt-resistance,highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
文摘The structure modification and its mechanism have been studied when perlite products changed from water-affinity state to anti-water state. The structure of fused perlite and its surface physicochemical properties have also been studied. The modification of perlite products has provided the products with anti-water property, which not only enhanced the quality of thermal insulating function, reduced the lost of heat energy, but also made the products water-proof These modified perlite products are used as ideal thermal insulating layers for the thermodynamic equipment and heat transporting conducts.
基金funding from the National Natural Science Foundation of China (22178301,21938011,51876186and 52150410417)the funding from the Natural Science Foundation of Zhejiang Province (LR21B060003 and LZ19E060002)+1 种基金grant from Science Technology Department of Zhejiang Province (2023C01182)supported by Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)。
文摘Polymer-derived ceramic(PDC) thin films are promising wear-resistant coatings for protecting metals and carbon-carbon composites from corrosion and oxidation.However,the high pyrolysis temperature hinders the applications on substrate materials with low melting points.We report a new synthesis route for PDC coatings using initiated chemical vapor deposited poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane)(pV_3D_3) as the precurs or.We investigated the changes in siloxane moieties and the network topology,and proposed a three-stage mechanism for the thermal annealing process.The rise of the connectivity number for the structures obtained at increased annealing temperatures was found with strong correlation to the enhanced mechanical properties and thermal conductivity.Our PDC films obtained via annealing at 850℃ exhibit at least 14.6% higher hardness than prior reports for PDCs synthesized below 1100℃.Furthermore,thermal conductivity up to 1.02 W(mK)^(-1) was achieved at the annealing temperature as low as 700℃,which is on the same order of magnitude as PDCs obtained above 1100℃.Using minimum thermal conductivity models,we found that the thermal transport is dominated by diffusons in the films below the percolation of rigidity,while ultra-short mean-free path phonons contribute to the thermal conductivity of the films above the percolation threshold.The findings of this work provide new insights for the development of wear-resistant and thermally conductive PDC thin films for durable protection coatings.
基金the National Natural Science Foundation of China(Grant No.42204006)the Guangxi Natural Science Foundation of China(2020GXNSFBA297145)+1 种基金the“Ba Gui Scholars”program of the provincial government of Guangxi,and Innovation Project of GuangXi Graduate Education(Grant No.YCSW2022322)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(GrantNo.20-01-03,21-01-04)
文摘Temperature and pressure play key roles in Global Navigation Satellite System(GNSS) precipitable water vapor(PWV) retrieval. The National Aeronautics and Space Administration(NASA) and European Center for Medium-Range Weather Forecasts(ECMWF) have released their latest reanalysis product: the modern-era retrospective analysis for research and applications, version 2(MERRA-2) and the fifthgeneration ECMWF reanalysis(ERA5), respectively. Based on the reanalysis data, we evaluate and analyze the accuracy of the surface temperature and pressure products in China using the the measured temperature and pressure data from 609 ground meteorological stations in 2017 as reference values.Then the accuracy of the two datasets and their performances in estimating GNSS PWV are analyzed. The PWV derived from the pressure and temperature products of ERA5 and MERRA-2 has high accuracy. The annual average biases of pressure and temperature for ERA5 are-0.07 hPa and 0.45 K, with the root mean square error(RMSE) of 0.95 hPa and 2.04 K, respectively. The annual average biases of pressure and temperature for MERRA-2 are-0.01 hPa and 0.38 K, with the RMSE of 1.08 h Pa and 2.66 K, respectively.The accuracy of ERA5 is slightly higher than that of MERRA-2. The two reanalysis data show negative biases in most regions of China, with the highest to lowest accuracy in the following order: the south,north, northwest, and Tibet Plateau. Comparing the GNSS PWV calculated using MERRA-2(GNSS MERRA-2 PWV) and ERA5(GNSS ERA5 PWV) with the radiosonde-derived PWV from 48 co-located GNSS stations and the measured PWV of the co-location radiosonde stations, it is found that the accuracy of GNSS ERA5 PWV is better than that of GNSS MERRA-2 PWV. These results show the different applicability of surface temperature and pressure products from MERRA-2 and ERA5 data, indicating that both have important applications in meteorological research and GNSS water vapor monitoring in China.
基金the support from National Natural Science Foundation of China (22208355, 22178363 and 21978300)the financial support and mica samples from Changzi Wu and RIKA technology CO., LTD.
文摘The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.
基金support for this work from the National Natural Science Foundation of China(31960294,32160349)Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2017Z005,2020Z005)+1 种基金the Project for Cultivating New Century Academic and Technology Leaders of Nanning City(2020010)the High-Performance Computing Platform of Guangxi University.
文摘The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.