Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pave...Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.展开更多
Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface...Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface engineering is profound. The initial stage of nano surface engineering is realized at present day. The key technologies of nano surface engineering are the support to the equipment remanufacturing. Today the relatively mature key technologies are: nano thermal spraying technology, nano electric-brush plating technology, nano self-repairing anti-friction technology and metal surface nanocrystallization, etc. Many scientific issues have been continuously discovered. Meanwhile they have been applied in the practice more and more, and have archived the excellent remanufacturing effect.展开更多
The development of materials technologies, including surface engineering is one of the main trends in the knowledge-based economy. The direct advantages of the application of these technologies are the energy and raw ...The development of materials technologies, including surface engineering is one of the main trends in the knowledge-based economy. The direct advantages of the application of these technologies are the energy and raw materials saving and the lack of negative influence on the natural environment. The disadvantages are the high equipment and operating costs, the requirement of the highest service qualifications and the necessity to develop specialized technological solutions for different kinds of applications, tools and processes. The potential economic and practical effects are so significant that except for new scientific and technological solutions new innovative organizational solutions are being searched. They should enable an extensive application of innovations in all economy sectors, including SMEs, so the investment possibilities and specialized skills would not constitute decisive limitations. A concept, assumptions, principles of operation and practical implementation of such a model organisational structure - Plasma Technologies Centre of the Institute for Terotechnology (ITeE Radom, Poland) are presented in the article. Development trends directly correlated with the needs of the national market and economy as well as network connections within Framework Programmes of the European Union are depicted. Examples of several highly specialised technological solutions (out of a few dozen solutions implemented in the PTC) and their technological efficacy are described.展开更多
Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( ...Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( PBS) and silk fibroin(SF) to produce fiber-based finely tuned porous architectures by weft and warp knittings. The obtained knitted constructs are described in terms of their morphology, mechanical properties,swelling ability,degradation behaviour,and cytotoxicity. Each type of polymer fibers allows for the processing of a very reproducible intra-architectural scaffold geometry,with distinct characteristics in terms of the surface physicochemistry,mechanical performance,and degradation capability,which has an impact on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity screening shows that both materials can support cell adhesion and proliferation. Furthermore, different surface modifications were performed( acid /alkaline treatment, UV radiation,and plasma) for modulating cell behavior. An increase of cell-material interactions were observed,indicating the important role of materials surface in the first hours of culturing. Human adipose-derived stem cells( hASCs) became an emerging possibility for regenerative medicine and tissue replacement therapies. The potential of the recently developed silk-based biotextile structures to promote hASCs adhesion,proliferation,and differentiation is also evaluated. The obtained results validate the developed constructs as viable matrices for TE applications. Given the processing efficacy and versatility of the knitting technology, and the interesting structural and surface properties of the proposed polymer fibers,it is foreseen that our developed systems can be attractive for the functional engineering of tissues such as bone,skin,ligaments or cartilage and also for develop more complex systems for further industrialization of TE products.展开更多
Nervous necrosis virus (NNV), the etiological agent of viral nervous necrosis, has a high mortality rate of 100% in hatchery-reared larvae and juveniles. At present, there are still no effective vaccines available for...Nervous necrosis virus (NNV), the etiological agent of viral nervous necrosis, has a high mortality rate of 100% in hatchery-reared larvae and juveniles. At present, there are still no effective vaccines available for NNV. Pichia pastoris surface display of viral capsid proteins was generated in hopes of developing an oral vaccine against red-grouper-nervous-necrosis virus (RGNNV) in fish. Fingerlings or juveniles that showed clinical signs of NNV infection were proved by RT-PCR for the appearance of expected length of 198 bpcDNA and further analysis by DNA sequencing. The DNA fragment containing AGα1 linked to RG-NNVRNA2, 2100 bp in length, was inserted into pPIC9K vector. Linearlized plasmids were electroporated into P. pastoris GS115 (mut+His?) and yeast isolates that had Muts?His+ and resistance phenotype at 4 mg/mL geniticin were selected to determine the integration of the target gene by PCR reaction. The extracted cell walls from the yeasts cultured in buffered-methanol-complex medium (BMMY) through an induction of 0.5% methanol for 6 days, were investigated for the fusion proteins by western blot. A protein band of 73 kDa predicted to be the fusion protein and a non-specific one of 56 kDa were detected. Staining of the fusion proteins expressing cells with corresponding antibodies revealed their presence of NNVRNA2, but varied the intensity of detected signals from cell to cell by confocal laser scanning fluorescence microscopy. The predicted fusion proteins tertiary structure also confirmed exposed conformation of the fusion protein on the cell wall. In this study, the capsid proteins from the red-spotted grouper nervous necrosis virus were successfully expressed on the cell surface of P. pastoris but still low levels of fusion protein expression. Further studies are required to optimize fully surface protein expression prior to evaluate the possible use of the constructed recombinant yeast as an oral vaccine against RG-NNV infection.展开更多
Based on the foreign remanufacturing mode,which relies mainly on Part-Replacing Repair Method and Size-Changing Repair Method,China has explored and practiced the new remanufacturing mode,which relies mainly on Surfac...Based on the foreign remanufacturing mode,which relies mainly on Part-Replacing Repair Method and Size-Changing Repair Method,China has explored and practiced the new remanufacturing mode,which relies mainly on Surface Repair and Performance Improving Method.The aim of remanufacturing forming is to renew rapidly the original size of the waste components rapidly,and then improve their service performance.The advanced surface engineering technology,especially the high density heat source surface forming technology,is the important technique to carry out rapid forming.Based on the arc heat source,plasma heat source and laser heat source,three kinds of high density heat source remanufacturing forming technologies,such as high speed arc spraying forming technology,micro-arc plasma forming technology,and laser cladding forming technology,have been developed.The benefits of remanufacturing forming based on advanced surface engineering technologies are great.展开更多
文摘Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.
基金National Natural Science Foundation of China(50235030)“863”Project(2003AA331130)and“973”Project(G1999065009)
文摘Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface engineering is profound. The initial stage of nano surface engineering is realized at present day. The key technologies of nano surface engineering are the support to the equipment remanufacturing. Today the relatively mature key technologies are: nano thermal spraying technology, nano electric-brush plating technology, nano self-repairing anti-friction technology and metal surface nanocrystallization, etc. Many scientific issues have been continuously discovered. Meanwhile they have been applied in the practice more and more, and have archived the excellent remanufacturing effect.
文摘The development of materials technologies, including surface engineering is one of the main trends in the knowledge-based economy. The direct advantages of the application of these technologies are the energy and raw materials saving and the lack of negative influence on the natural environment. The disadvantages are the high equipment and operating costs, the requirement of the highest service qualifications and the necessity to develop specialized technological solutions for different kinds of applications, tools and processes. The potential economic and practical effects are so significant that except for new scientific and technological solutions new innovative organizational solutions are being searched. They should enable an extensive application of innovations in all economy sectors, including SMEs, so the investment possibilities and specialized skills would not constitute decisive limitations. A concept, assumptions, principles of operation and practical implementation of such a model organisational structure - Plasma Technologies Centre of the Institute for Terotechnology (ITeE Radom, Poland) are presented in the article. Development trends directly correlated with the needs of the national market and economy as well as network connections within Framework Programmes of the European Union are depicted. Examples of several highly specialised technological solutions (out of a few dozen solutions implemented in the PTC) and their technological efficacy are described.
文摘Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( PBS) and silk fibroin(SF) to produce fiber-based finely tuned porous architectures by weft and warp knittings. The obtained knitted constructs are described in terms of their morphology, mechanical properties,swelling ability,degradation behaviour,and cytotoxicity. Each type of polymer fibers allows for the processing of a very reproducible intra-architectural scaffold geometry,with distinct characteristics in terms of the surface physicochemistry,mechanical performance,and degradation capability,which has an impact on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity screening shows that both materials can support cell adhesion and proliferation. Furthermore, different surface modifications were performed( acid /alkaline treatment, UV radiation,and plasma) for modulating cell behavior. An increase of cell-material interactions were observed,indicating the important role of materials surface in the first hours of culturing. Human adipose-derived stem cells( hASCs) became an emerging possibility for regenerative medicine and tissue replacement therapies. The potential of the recently developed silk-based biotextile structures to promote hASCs adhesion,proliferation,and differentiation is also evaluated. The obtained results validate the developed constructs as viable matrices for TE applications. Given the processing efficacy and versatility of the knitting technology, and the interesting structural and surface properties of the proposed polymer fibers,it is foreseen that our developed systems can be attractive for the functional engineering of tissues such as bone,skin,ligaments or cartilage and also for develop more complex systems for further industrialization of TE products.
文摘Nervous necrosis virus (NNV), the etiological agent of viral nervous necrosis, has a high mortality rate of 100% in hatchery-reared larvae and juveniles. At present, there are still no effective vaccines available for NNV. Pichia pastoris surface display of viral capsid proteins was generated in hopes of developing an oral vaccine against red-grouper-nervous-necrosis virus (RGNNV) in fish. Fingerlings or juveniles that showed clinical signs of NNV infection were proved by RT-PCR for the appearance of expected length of 198 bpcDNA and further analysis by DNA sequencing. The DNA fragment containing AGα1 linked to RG-NNVRNA2, 2100 bp in length, was inserted into pPIC9K vector. Linearlized plasmids were electroporated into P. pastoris GS115 (mut+His?) and yeast isolates that had Muts?His+ and resistance phenotype at 4 mg/mL geniticin were selected to determine the integration of the target gene by PCR reaction. The extracted cell walls from the yeasts cultured in buffered-methanol-complex medium (BMMY) through an induction of 0.5% methanol for 6 days, were investigated for the fusion proteins by western blot. A protein band of 73 kDa predicted to be the fusion protein and a non-specific one of 56 kDa were detected. Staining of the fusion proteins expressing cells with corresponding antibodies revealed their presence of NNVRNA2, but varied the intensity of detected signals from cell to cell by confocal laser scanning fluorescence microscopy. The predicted fusion proteins tertiary structure also confirmed exposed conformation of the fusion protein on the cell wall. In this study, the capsid proteins from the red-spotted grouper nervous necrosis virus were successfully expressed on the cell surface of P. pastoris but still low levels of fusion protein expression. Further studies are required to optimize fully surface protein expression prior to evaluate the possible use of the constructed recombinant yeast as an oral vaccine against RG-NNV infection.
文摘Based on the foreign remanufacturing mode,which relies mainly on Part-Replacing Repair Method and Size-Changing Repair Method,China has explored and practiced the new remanufacturing mode,which relies mainly on Surface Repair and Performance Improving Method.The aim of remanufacturing forming is to renew rapidly the original size of the waste components rapidly,and then improve their service performance.The advanced surface engineering technology,especially the high density heat source surface forming technology,is the important technique to carry out rapid forming.Based on the arc heat source,plasma heat source and laser heat source,three kinds of high density heat source remanufacturing forming technologies,such as high speed arc spraying forming technology,micro-arc plasma forming technology,and laser cladding forming technology,have been developed.The benefits of remanufacturing forming based on advanced surface engineering technologies are great.