In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut...In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
In recent years,as giant satellite constellations grow rapidly worldwide,the co-existence between constellations has been widely concerned.In this paper,we overview the co-frequency interference(CFI)among the giant no...In recent years,as giant satellite constellations grow rapidly worldwide,the co-existence between constellations has been widely concerned.In this paper,we overview the co-frequency interference(CFI)among the giant non-geostationary orbit(NGSO)constellations.Specifically,we first summarize the CFI scenario and evaluation index among different NGSO constellations.Based on statistics about NGSO constellation plans,we analyse the challenges in mitigation and analysis of CFI.Next,the CFI calculation methods and research progress are systematically sorted out from the aspects of interference risk analysis framework,numerical calculation and link construction.Then,the feasibility of interference mitigation technologies based on space,frequency domain isolation,power control,and interference alignment mitigation in the NGSO mega-constellation CFI scenario are further sorted out.Finally,we present promising directions for future research in CFI analysis and CFI avoidance.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
从海量的天文观测数据中快速搜寻罕见的快速射电暴(Fast Radio Burst,FRB)事件,干扰缓解是其中一项关键而具有挑战的工作.射频干扰(Radio Frequency Interference,RFI)会淹没真实的天文事件,还会导致搜寻管线输出大量的假阳性候选体.由...从海量的天文观测数据中快速搜寻罕见的快速射电暴(Fast Radio Burst,FRB)事件,干扰缓解是其中一项关键而具有挑战的工作.射频干扰(Radio Frequency Interference,RFI)会淹没真实的天文事件,还会导致搜寻管线输出大量的假阳性候选体.由于干扰来源及其种类的复杂性,目前并没有一种通用的方法可以解决这个问题.为了降低干扰对FRB观测搜寻的影响,分析和研究了南山26m射电望远镜L波段观测数据中的干扰情况,针对主要的窄带干扰和宽带干扰建立了3层次的干扰缓解处理流程,从而有效缓解了观测数据的干扰污染情况.将该流程嵌入到FRB色散动态谱搜寻(Dispersed Dynamic Spectra Search,DDSS)管线中,实验结果表明,搜寻管线的检测率和检测精度得到了进一步的提高.该方法为FRB观测数据干扰缓解处理提供了有价值的参考.展开更多
基金financial support from PetroChina Innovation Foundation。
文摘In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘In recent years,as giant satellite constellations grow rapidly worldwide,the co-existence between constellations has been widely concerned.In this paper,we overview the co-frequency interference(CFI)among the giant non-geostationary orbit(NGSO)constellations.Specifically,we first summarize the CFI scenario and evaluation index among different NGSO constellations.Based on statistics about NGSO constellation plans,we analyse the challenges in mitigation and analysis of CFI.Next,the CFI calculation methods and research progress are systematically sorted out from the aspects of interference risk analysis framework,numerical calculation and link construction.Then,the feasibility of interference mitigation technologies based on space,frequency domain isolation,power control,and interference alignment mitigation in the NGSO mega-constellation CFI scenario are further sorted out.Finally,we present promising directions for future research in CFI analysis and CFI avoidance.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
文摘从海量的天文观测数据中快速搜寻罕见的快速射电暴(Fast Radio Burst,FRB)事件,干扰缓解是其中一项关键而具有挑战的工作.射频干扰(Radio Frequency Interference,RFI)会淹没真实的天文事件,还会导致搜寻管线输出大量的假阳性候选体.由于干扰来源及其种类的复杂性,目前并没有一种通用的方法可以解决这个问题.为了降低干扰对FRB观测搜寻的影响,分析和研究了南山26m射电望远镜L波段观测数据中的干扰情况,针对主要的窄带干扰和宽带干扰建立了3层次的干扰缓解处理流程,从而有效缓解了观测数据的干扰污染情况.将该流程嵌入到FRB色散动态谱搜寻(Dispersed Dynamic Spectra Search,DDSS)管线中,实验结果表明,搜寻管线的检测率和检测精度得到了进一步的提高.该方法为FRB观测数据干扰缓解处理提供了有价值的参考.