期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing 被引量:2
1
作者 Yi Wan Zihe Zhao +5 位作者 Mingzhi Yu Zhenbing Ji Teng Wang Yukui Cai Chao Liu Zhanqiang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期240-252,共13页
The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati... The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment. 展开更多
关键词 Ti-6Al-4V implant Laser processing Micro-nano structure Zinc oxide Osseointegration ability antibacterial capacity
原文传递
A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration
2
作者 Yingji Mao Yiwen Zhang +3 位作者 Ying Wang Tao Zhou Bingxu Ma Pinghui Zhou 《Regenerative Biomaterials》 SCIE EI CSCD 2023年第1期1033-1047,共15页
Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects.However,donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes.Tissue engineering technol... Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects.However,donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes.Tissue engineering technology that utilizes biologically active composites to accelerate the healing and reconstruction of segmental bone defects has led to new ideas for in situ bone repair.Multifunctional nanocomposite hydrogels were constructed by covalently binding silver(Ag^(+))core-embedded mesoporous silica nanoparticles(Ag@MSN)to bone morphogenetic protein-2(BMP-2),which was encapsulated into silk fibroin methacryloyl(SilMA)and photo-crosslinked to form an Ag@MSN-BMP-2/SilMA hydrogel to preserve the biological activity of BMP-2 and slow its release.More importantly,multifunctional Ag^(+)-containing nanocomposite hydrogels showed antibacterial properties.These hydrogels possessed synergistic osteogenic and antibacterial effects to promote bone defect repair.Ag@MSN-BMP-2/SilMA exhibited good biocompatibility in vitro and in vivo owing to its interconnected porosity and improved hydrophilicity.Furthermore,the multifunctional nanocomposite hydrogel showed controllable sustained-release activity that promoted bone regeneration in repairing rat skull defects by inducing osteogenic differentiation and neovascularization.Overall,Ag@MSN-BMP-2/SilMA hydrogels enrich bone regeneration strategies and show great potential for bone regeneration. 展开更多
关键词 tissue engineering nanocomposite multifunctional hydrogels drug release antibacterial capacity bone regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部