The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati...The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment.展开更多
Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects.However,donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes.Tissue engineering technol...Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects.However,donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes.Tissue engineering technology that utilizes biologically active composites to accelerate the healing and reconstruction of segmental bone defects has led to new ideas for in situ bone repair.Multifunctional nanocomposite hydrogels were constructed by covalently binding silver(Ag^(+))core-embedded mesoporous silica nanoparticles(Ag@MSN)to bone morphogenetic protein-2(BMP-2),which was encapsulated into silk fibroin methacryloyl(SilMA)and photo-crosslinked to form an Ag@MSN-BMP-2/SilMA hydrogel to preserve the biological activity of BMP-2 and slow its release.More importantly,multifunctional Ag^(+)-containing nanocomposite hydrogels showed antibacterial properties.These hydrogels possessed synergistic osteogenic and antibacterial effects to promote bone defect repair.Ag@MSN-BMP-2/SilMA exhibited good biocompatibility in vitro and in vivo owing to its interconnected porosity and improved hydrophilicity.Furthermore,the multifunctional nanocomposite hydrogel showed controllable sustained-release activity that promoted bone regeneration in repairing rat skull defects by inducing osteogenic differentiation and neovascularization.Overall,Ag@MSN-BMP-2/SilMA hydrogels enrich bone regeneration strategies and show great potential for bone regeneration.展开更多
基金supported by the National Natural Science Foundation of China(51975336)Key Research and Development Program of Shandong Province(2020JMRH0202)+1 种基金the National Natural Science Foundation of China(52172282)China Postdoctoral Science Foundation(2021M690106)。
文摘The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment.
基金supported by grants from the 512 Talents Development Project of Bengbu Medical College(Grant Nos by51202302 and by51202309)the Domestic Visiting and Training Program for Outstanding Young Backbone Teachers in High Schools(Grant No.gxgnfx2022036)+2 种基金the Natural Science Research Project of the Anhui Educational Committee(Grant Nos KJ2021ZD0089 and 2022AH020086)the Scientific Research Foundation of Bengbu Medical College(Grant No.2021bypd006)the Distinguished Young Scholars of First Affiliated Hospital of Bengbu Medical College(Grant No.2021byyfyjq01).
文摘Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects.However,donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes.Tissue engineering technology that utilizes biologically active composites to accelerate the healing and reconstruction of segmental bone defects has led to new ideas for in situ bone repair.Multifunctional nanocomposite hydrogels were constructed by covalently binding silver(Ag^(+))core-embedded mesoporous silica nanoparticles(Ag@MSN)to bone morphogenetic protein-2(BMP-2),which was encapsulated into silk fibroin methacryloyl(SilMA)and photo-crosslinked to form an Ag@MSN-BMP-2/SilMA hydrogel to preserve the biological activity of BMP-2 and slow its release.More importantly,multifunctional Ag^(+)-containing nanocomposite hydrogels showed antibacterial properties.These hydrogels possessed synergistic osteogenic and antibacterial effects to promote bone defect repair.Ag@MSN-BMP-2/SilMA exhibited good biocompatibility in vitro and in vivo owing to its interconnected porosity and improved hydrophilicity.Furthermore,the multifunctional nanocomposite hydrogel showed controllable sustained-release activity that promoted bone regeneration in repairing rat skull defects by inducing osteogenic differentiation and neovascularization.Overall,Ag@MSN-BMP-2/SilMA hydrogels enrich bone regeneration strategies and show great potential for bone regeneration.