This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 ...This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 against S.flexneri_14 was 2.45 mg/mL and 18.75μg/mL,respectively.Growth and kill kinetics assays showed that the combined use of 1/2MIC PLA plus 1/2MIC XJS01 had a better activity against planktonic S.flexneri_14 compared to treatment with PLA and XJS01 used singly(1/2MIC and 2MIC).Cellular biochemical and morphological analysis revealed the remarkable ability of the combination in disrupting cell appearance and promoting deformation of planktonic S.flexneri_14 compared to single use.Moreover,S.flexneri_14 biofilm formation was inhibited and degraded by the combination,which showed a more remarkable antibiofilm activity than PLA and XJS01 when used singly.This study demonstrates the synergistic antibacterial activity of PLA and XJS01 against S.flexneri_14 in either planktonic or biofilm states in foods.展开更多
Extracellular polymeric substances(EPS)are present externally to the microorganisms and play an important role in attachment and biofilm formation.These polymers possess antibacterial and antifouling activities.In thi...Extracellular polymeric substances(EPS)are present externally to the microorganisms and play an important role in attachment and biofilm formation.These polymers possess antibacterial and antifouling activities.In this study,the antifouling activity of EPS produced by an epibiotic bacterium associated with macroalga Ulva lactuca was assessed against fouling bacteria and barnacle larvae.Results indicate that the EPS isolated from the epibiotic bacterium inhibits the biofilm formation of the bacteria without much antibacterial activity.Also,the EPS reduced the settlement of barnacle larvae on the hard substrate under laboratory conditions.The epibiotic bacterium was identified as Kocuria flava based on 16 S rRNA gene sequencing.The EPS was further analysed using Fourier transform infrared(FT-IR),nuclear magnetic resonance(NMR)and X-ray diffraction(XRD)to understand the biochemical composition.NMR analysis revealed the presence of polysaccharides,proteins,acetyl amine and succinyl groups.Scanning electron microscope analysis indicated that the EPS consisted of aggregated and irregular sphere-shaped particles.展开更多
Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus(MRSA)are two prevalent pathogens and have developed high resistant to most antibiotics.Therefore,it is a pressing need to develop a new method to...Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus(MRSA)are two prevalent pathogens and have developed high resistant to most antibiotics.Therefore,it is a pressing need to develop a new method to inhibit the spread of drug-resistant bacteria.Copper containing high-entropy alloy(HEA,Al0.4CoCr-CuFeNi)is a new kind of alloy material,which shows extensive antibacterial activity and mechanical properties in our previous research.This study further develops another HEA(CoCrCuFeNi)and evaluates its resistance against gram-negative A.baumannii and Gram-positive MRSA.The antibacterial tests show that the antibacterial rate of the HEA toward both bacteria reached nearly 99%,far better than the traditional copper-bearing 304 stainless steel(304 Cu-SS).The biofilm observation shows that the HEA could not only kill the planktonic bacteria,but also effectively inhibit the formation of biofilm.These data demonstrate that CoCrCuFeNi HEA possesses effective antibacterial and antibiofilm activities,making it a potential candidate for using in hospital,food industry,and domestic kitchens.展开更多
基金supported by Yunnan Fundamental Research Projects(Grant No.202101BE070001-046)the Natural Science Foundation of China(31960286).
文摘This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 against S.flexneri_14 was 2.45 mg/mL and 18.75μg/mL,respectively.Growth and kill kinetics assays showed that the combined use of 1/2MIC PLA plus 1/2MIC XJS01 had a better activity against planktonic S.flexneri_14 compared to treatment with PLA and XJS01 used singly(1/2MIC and 2MIC).Cellular biochemical and morphological analysis revealed the remarkable ability of the combination in disrupting cell appearance and promoting deformation of planktonic S.flexneri_14 compared to single use.Moreover,S.flexneri_14 biofilm formation was inhibited and degraded by the combination,which showed a more remarkable antibiofilm activity than PLA and XJS01 when used singly.This study demonstrates the synergistic antibacterial activity of PLA and XJS01 against S.flexneri_14 in either planktonic or biofilm states in foods.
基金The Deanship of Scientific Research of King Abdulaziz University under contract No.G-153-150-39。
文摘Extracellular polymeric substances(EPS)are present externally to the microorganisms and play an important role in attachment and biofilm formation.These polymers possess antibacterial and antifouling activities.In this study,the antifouling activity of EPS produced by an epibiotic bacterium associated with macroalga Ulva lactuca was assessed against fouling bacteria and barnacle larvae.Results indicate that the EPS isolated from the epibiotic bacterium inhibits the biofilm formation of the bacteria without much antibacterial activity.Also,the EPS reduced the settlement of barnacle larvae on the hard substrate under laboratory conditions.The epibiotic bacterium was identified as Kocuria flava based on 16 S rRNA gene sequencing.The EPS was further analysed using Fourier transform infrared(FT-IR),nuclear magnetic resonance(NMR)and X-ray diffraction(XRD)to understand the biochemical composition.NMR analysis revealed the presence of polysaccharides,proteins,acetyl amine and succinyl groups.Scanning electron microscope analysis indicated that the EPS consisted of aggregated and irregular sphere-shaped particles.
基金This study was financially supported by the Fundamental Research Funds for the Central Universities(Nos.N2002020 and N2002019)the National Natural Science Foundation of China(Nos.51871050,5184022 and 51901039)+1 种基金the National Key Research and Development Program of China(Nos.2019YFA0209901 and 2018YFA0702901)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201902).
文摘Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus(MRSA)are two prevalent pathogens and have developed high resistant to most antibiotics.Therefore,it is a pressing need to develop a new method to inhibit the spread of drug-resistant bacteria.Copper containing high-entropy alloy(HEA,Al0.4CoCr-CuFeNi)is a new kind of alloy material,which shows extensive antibacterial activity and mechanical properties in our previous research.This study further develops another HEA(CoCrCuFeNi)and evaluates its resistance against gram-negative A.baumannii and Gram-positive MRSA.The antibacterial tests show that the antibacterial rate of the HEA toward both bacteria reached nearly 99%,far better than the traditional copper-bearing 304 stainless steel(304 Cu-SS).The biofilm observation shows that the HEA could not only kill the planktonic bacteria,but also effectively inhibit the formation of biofilm.These data demonstrate that CoCrCuFeNi HEA possesses effective antibacterial and antibiofilm activities,making it a potential candidate for using in hospital,food industry,and domestic kitchens.