The occurrence of antibiotic resistance genes (ARGs) was investigated and quantified in 20 water samples collected in the Beijiang River, South China. Sulfonamide- and tetracycline-resistant bacteria were present in...The occurrence of antibiotic resistance genes (ARGs) was investigated and quantified in 20 water samples collected in the Beijiang River, South China. Sulfonamide- and tetracycline-resistant bacteria were present in 17 and 14 of the collected 20 samples. For sulfonamide ARGs, sulI and sulII were frequently observed in the Beijiang River. The levels of sulI were higher than sulII (p 〈 0.05), with the mean values of (1.41 ± 1.12) × 10-2 and (1.58 ± 1.71) × 10-3 copies/16S rDNA, respectively. For tetracycline ARGs, tetG had the highest frequency, 100%, followed by tetA (85%), tetO (85%), tetC (70%), tetX (60%), tetM (40%) and tetQ (20%), while tetE and tetS were not detected in all the samples from the Beijiang River. On the other hand, tetC had the highest concentration, ranging from 8.30 × 10-2 to 13.20 copies/16S rDNA. The poor correlation between ARGs and antibiotic concentrations revealed that the self-amplification and persistence of ARGs were the reasons that made ARGs exist in the water environment even though the antibiotic selecting pressure was absent. Because so few field measurements have been conducted for investigating the levels of ARGs in rivers in South China, this study provides an important insight on better understanding the occurrence and spread of ARGs in such an ecosystem.展开更多
Antibiotic resistance genes(ARGs)might have great effect on ecological security and human health.Oceans are important reservoirs that receive tremendous amounts of pollutants globally.However,information on the prolif...Antibiotic resistance genes(ARGs)might have great effect on ecological security and human health.Oceans are important reservoirs that receive tremendous amounts of pollutants globally.However,information on the proliferation of ARGs in seawater is still limited.This study performed field sampling to investigate the occurrence and distribution of ARGs in seawater of the South China Sea,which is the deepest and largest sea in China.The results showed that the total absolute abundances of ARGs in seawater samples ranged from 2.1×10^(3)to 2.3×10^(4)copies/mL,with an of 5.0×10^(3)copies/mL and a range of 2.2×10^(3)–1.8×10^(4)copies/mL for those with mobile genetic elements(MGEs).Genes resistant to multidrug,aminoglycoside,tetracycline,and fluoroquinolone antibiotics accounted for 77.3%–88.6%of total ARGs in seawater.Proteobacteria and Cyanobacteria represented 32.1%–56.2%and 30.4%–49.5%of microbial community,respectively.Prochlorococcus_MIT9313 and Clade_la were the prevalent genera in seawater of the South China Sea.Complex co-occurrence relationship existed among ARGs,MGEs,and bacteria.Anthropogenic activities had critical influence on ARGs and MGEs.Hospital wastewater,wastewater treatment plant effluent,sewage,aquaculture tailwater,and runoff were determined as the important sources of ARGs in seawater of the South China Sea based on positive matrix factorization analysis.展开更多
基金supported by the National Natural Science Foundation of China (No. 21177162)
文摘The occurrence of antibiotic resistance genes (ARGs) was investigated and quantified in 20 water samples collected in the Beijiang River, South China. Sulfonamide- and tetracycline-resistant bacteria were present in 17 and 14 of the collected 20 samples. For sulfonamide ARGs, sulI and sulII were frequently observed in the Beijiang River. The levels of sulI were higher than sulII (p 〈 0.05), with the mean values of (1.41 ± 1.12) × 10-2 and (1.58 ± 1.71) × 10-3 copies/16S rDNA, respectively. For tetracycline ARGs, tetG had the highest frequency, 100%, followed by tetA (85%), tetO (85%), tetC (70%), tetX (60%), tetM (40%) and tetQ (20%), while tetE and tetS were not detected in all the samples from the Beijiang River. On the other hand, tetC had the highest concentration, ranging from 8.30 × 10-2 to 13.20 copies/16S rDNA. The poor correlation between ARGs and antibiotic concentrations revealed that the self-amplification and persistence of ARGs were the reasons that made ARGs exist in the water environment even though the antibiotic selecting pressure was absent. Because so few field measurements have been conducted for investigating the levels of ARGs in rivers in South China, this study provides an important insight on better understanding the occurrence and spread of ARGs in such an ecosystem.
基金supported by the National Natural Science Foundation of China(No.42276155)the Taishan Scholars Program,Shandong Provincial Natural Science Foundation(No.ZR2020QD131)+1 种基金the Research Program of CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation(No.1189010002)the Key R&D Program of Shandong Province,China(No.2022CXPT019).
文摘Antibiotic resistance genes(ARGs)might have great effect on ecological security and human health.Oceans are important reservoirs that receive tremendous amounts of pollutants globally.However,information on the proliferation of ARGs in seawater is still limited.This study performed field sampling to investigate the occurrence and distribution of ARGs in seawater of the South China Sea,which is the deepest and largest sea in China.The results showed that the total absolute abundances of ARGs in seawater samples ranged from 2.1×10^(3)to 2.3×10^(4)copies/mL,with an of 5.0×10^(3)copies/mL and a range of 2.2×10^(3)–1.8×10^(4)copies/mL for those with mobile genetic elements(MGEs).Genes resistant to multidrug,aminoglycoside,tetracycline,and fluoroquinolone antibiotics accounted for 77.3%–88.6%of total ARGs in seawater.Proteobacteria and Cyanobacteria represented 32.1%–56.2%and 30.4%–49.5%of microbial community,respectively.Prochlorococcus_MIT9313 and Clade_la were the prevalent genera in seawater of the South China Sea.Complex co-occurrence relationship existed among ARGs,MGEs,and bacteria.Anthropogenic activities had critical influence on ARGs and MGEs.Hospital wastewater,wastewater treatment plant effluent,sewage,aquaculture tailwater,and runoff were determined as the important sources of ARGs in seawater of the South China Sea based on positive matrix factorization analysis.