Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma...This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.展开更多
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri...Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.展开更多
Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulat...Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.展开更多
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep...The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.展开更多
The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previousl...The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previously reported GPC QTLs.An analysis of 87 landraces and 259 modern cultivars revealed the loss of superior GPC haplotypes,especially in Chinese cultivars.These haplotypes were preferentially adopted in different agroecological zones and had broad effects on wheat yield and agronomic traits.Most GPC QTLs did not significantly reduce yield,suggesting that high GPC can be achieved without a yield penalty.The results of this study provide a reference for future GPC breeding in wheat using the four identified QTLs.展开更多
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G...Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pus...Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pushed to a higher level in the era of the linear accelerator-based SIMT-SRS. This short review focuses on patient selection, image preparation, patient simulation, electronic portal imaging device (EPID) QA, and the patient treatment process in the SIMT-SRS treatment only. Image-relevant recommendations and guidelines are presented and contrast application, acquisition efficiency, and alignment accuracy of CT and MRI images are explored. With guidance, the SIMT-SRS can be implemented with high precision and efficiency. 1 mm or 0.5 mm and non-uniform PTV margin expansion for all targets would become possible. It will enhance cancer killing effect in radio-immune combination therapy. General routine daily, monthly, and annual linear accelerator image quality assurances are excluded.展开更多
In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse fun...In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery asse...Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.展开更多
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a...The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively ...A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.展开更多
In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerati...In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site.A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity,antibacterial properties,and angiogenic properties.All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds.Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers.The results were promising and opened new frontiers for utilizing these materials on a larger scale.The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration.Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties.All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government.展开更多
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金supported by the Guangdong Technical System of Peanut and Soybean Industry(2023KJ136-05)China Agriculture Research System(CARS-15)。
文摘This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.
基金The authors acknowledge FAPESP for funding the Research Project Number 2017-18-782-6 and the Grant 2021/07458-9.
文摘Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.
基金funded by the Shandong Provincial Key Research and Development Program(No.2019GSF107031).
文摘Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.
基金The first author(V.Kamchoom)acknowledges the grant(Grant No.FRB66065/0258-RE-KRIS/FF66/53)from King Mongkut’s Insti-tute of Technology Ladkrabang(KMITL)and National Science,Research and Innovation Fund(NSRF)the grant under Climate Change and Climate Variability Research in Monsoon Asia(CMON3)from the National Research Council of Thailand(NRCT)(Grant No.N10A650844)the National Natural Science Foundation of China(NSFC).
文摘The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.
基金supported by the“Integration of Two Chains”Key Research and Development Projects of Shaanxi Province“Wheat Seed Industry Innovation Project”,Chinathe Key R&D of Yangling Seed Industry Innovation Center,China(Ylzy-xm-01)。
文摘The grain protein content(GPC)is the key parameter for wheat grain nutritional quality.This study conducted a resampling GWAS analysis using 406 wheat accessions across eight environments,and identified four previously reported GPC QTLs.An analysis of 87 landraces and 259 modern cultivars revealed the loss of superior GPC haplotypes,especially in Chinese cultivars.These haplotypes were preferentially adopted in different agroecological zones and had broad effects on wheat yield and agronomic traits.Most GPC QTLs did not significantly reduce yield,suggesting that high GPC can be achieved without a yield penalty.The results of this study provide a reference for future GPC breeding in wheat using the four identified QTLs.
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金This work was supported by the National Science and Technology Council,Taiwan,under Project NSTC 112-2221-E-029-015.
文摘Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
文摘Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pushed to a higher level in the era of the linear accelerator-based SIMT-SRS. This short review focuses on patient selection, image preparation, patient simulation, electronic portal imaging device (EPID) QA, and the patient treatment process in the SIMT-SRS treatment only. Image-relevant recommendations and guidelines are presented and contrast application, acquisition efficiency, and alignment accuracy of CT and MRI images are explored. With guidance, the SIMT-SRS can be implemented with high precision and efficiency. 1 mm or 0.5 mm and non-uniform PTV margin expansion for all targets would become possible. It will enhance cancer killing effect in radio-immune combination therapy. General routine daily, monthly, and annual linear accelerator image quality assurances are excluded.
基金supported by the Natural Science Foundation of China(52273288 and U2102211)the Natural Science Foundation of Heilongjiang Province of China(LH2021B014)the Fundamental Research Foundation for Universities of Heilongjiang Province(2021-KYYWF-0004).
文摘In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金We express our sincere appreciation to the National Natural Science Foundation of China(No.51474113(M.Jing),22279070[L.Wang]and U21A20170[X.He])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang]).And we would like to thank the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology for facility support.
文摘Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
基金the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)+1 种基金Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(Start-up grant E1552102)the China Postdoctoral Science Foundation(No.2023M732553).
文摘The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R50)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.
文摘In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site.A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity,antibacterial properties,and angiogenic properties.All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds.Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers.The results were promising and opened new frontiers for utilizing these materials on a larger scale.The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration.Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties.All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government.