Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicat...Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.展开更多
The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing meta...The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ. Petrological studies and thermodynamic modeling of the spinel -- quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions. Spinel occurs in two textural settings:(1) high Xzn(Zn/(Mg + FeH -- Zn) = 0.071--0.232) spinel with perthitic K-feld- spar, sillimanite and quartz in the rock matrix; and (2)low Xzn (0.045-0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(l) near-isobaric cooling from 975 ℃ to 875 ℃ around 8 kbar, represented by the formation of garnet porphyroblasts from spinel and quartz; and(2)cooling and decompression from 850 ℃, 8 kbar to below 750 ℃- 6.5 kbar, represented by the break-down of garnet. The spinel + quartz assemblage is considered to have been stable at peak metamorphism, formed through the break-down of cordierite, indi- caring a near isothermal compression process. Our study confirms the regional extent of UHT metamor- phism within the IMSZ associated with the Paleoproterozoic subduction-collision process.展开更多
The garnet (Grt) and biotite (Bt) from gneisses of the Ji’ an Group are characterized by diffusion zoning at the rim, but equilibrium composition of metamorphic peak is usually remained in extensive interior area. Ga...The garnet (Grt) and biotite (Bt) from gneisses of the Ji’ an Group are characterized by diffusion zoning at the rim, but equilibrium composition of metamorphic peak is usually remained in extensive interior area. Garnet with growth zoning is also found in the kyanite zone.In the light of microarea compositional variation of Grt and Bt, the temperatuIe and pressuIe at the progressive, peak and post peak metamorphic stages are determined by correctly using GrtBt thermometer and GASP barometer. On this basis, a counterclockwise P-T-t path can be constructed, which reflects the closing process of an ensialic rift belt in this region during the Early Proterozoic.展开更多
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P...After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.展开更多
内蒙古土贵乌拉地区分布了含石榴石花岗岩、夕线石榴黑云片麻岩以及二者以不同比例互层状组成的岩石,超高温变质岩以暗色含尖晶石堇青石夕线石榴黑云片麻岩条带或透镜体产于石榴石花岗岩和夕线石榴片麻岩中。基于[K]FMAS[H]系统以及岩...内蒙古土贵乌拉地区分布了含石榴石花岗岩、夕线石榴黑云片麻岩以及二者以不同比例互层状组成的岩石,超高温变质岩以暗色含尖晶石堇青石夕线石榴黑云片麻岩条带或透镜体产于石榴石花岗岩和夕线石榴片麻岩中。基于[K]FMAS[H]系统以及岩石成因格子,认为超高温变质岩经历了三个阶段的变质:早期变质作用阶段,以同一石榴石颗粒中含有夕线石、尖晶石、石英等单相矿物包体为特征,表明变质作用进入到尖晶石+石英组合稳定域;峰期变质作用阶段,以尖晶石+石英、假蓝宝石+石英、斜方辉石+夕线石+石英三种超高温矿物组合为特征,表明峰期变质条件稳定在这三种矿物组合稳定域,指示变质温度高于1000℃;退变质阶段过程中,粗颗粒斜方辉石边部和核部 Al 含量的重新平衡,指示温度降低到950~970℃左右,表明了近等压冷却的退变质作用,随后由于快速抬升,发生了近等温降压的退变质作用,这个过程以各种反应边和后成合晶结构为标志,例如尖晶石与石英、假蓝宝石与石英之间有堇青石的反应边,石榴石外围有堇青石和斜方辉石的后成合晶。最后黑云母和斜方辉石分解为黑云母标志着高级变质作用的结束。内蒙古土贵乌拉地区超高温变质岩经历了逆时针的 P-T 演化特点。展开更多
基金China Geological Survey(Grant No.20013000166) Natural Science Foundation of China(Grant No.49902006).
文摘Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.
文摘The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ. Petrological studies and thermodynamic modeling of the spinel -- quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions. Spinel occurs in two textural settings:(1) high Xzn(Zn/(Mg + FeH -- Zn) = 0.071--0.232) spinel with perthitic K-feld- spar, sillimanite and quartz in the rock matrix; and (2)low Xzn (0.045-0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(l) near-isobaric cooling from 975 ℃ to 875 ℃ around 8 kbar, represented by the formation of garnet porphyroblasts from spinel and quartz; and(2)cooling and decompression from 850 ℃, 8 kbar to below 750 ℃- 6.5 kbar, represented by the break-down of garnet. The spinel + quartz assemblage is considered to have been stable at peak metamorphism, formed through the break-down of cordierite, indi- caring a near isothermal compression process. Our study confirms the regional extent of UHT metamor- phism within the IMSZ associated with the Paleoproterozoic subduction-collision process.
文摘The garnet (Grt) and biotite (Bt) from gneisses of the Ji’ an Group are characterized by diffusion zoning at the rim, but equilibrium composition of metamorphic peak is usually remained in extensive interior area. Garnet with growth zoning is also found in the kyanite zone.In the light of microarea compositional variation of Grt and Bt, the temperatuIe and pressuIe at the progressive, peak and post peak metamorphic stages are determined by correctly using GrtBt thermometer and GASP barometer. On this basis, a counterclockwise P-T-t path can be constructed, which reflects the closing process of an ensialic rift belt in this region during the Early Proterozoic.
文摘After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.
文摘内蒙古土贵乌拉地区分布了含石榴石花岗岩、夕线石榴黑云片麻岩以及二者以不同比例互层状组成的岩石,超高温变质岩以暗色含尖晶石堇青石夕线石榴黑云片麻岩条带或透镜体产于石榴石花岗岩和夕线石榴片麻岩中。基于[K]FMAS[H]系统以及岩石成因格子,认为超高温变质岩经历了三个阶段的变质:早期变质作用阶段,以同一石榴石颗粒中含有夕线石、尖晶石、石英等单相矿物包体为特征,表明变质作用进入到尖晶石+石英组合稳定域;峰期变质作用阶段,以尖晶石+石英、假蓝宝石+石英、斜方辉石+夕线石+石英三种超高温矿物组合为特征,表明峰期变质条件稳定在这三种矿物组合稳定域,指示变质温度高于1000℃;退变质阶段过程中,粗颗粒斜方辉石边部和核部 Al 含量的重新平衡,指示温度降低到950~970℃左右,表明了近等压冷却的退变质作用,随后由于快速抬升,发生了近等温降压的退变质作用,这个过程以各种反应边和后成合晶结构为标志,例如尖晶石与石英、假蓝宝石与石英之间有堇青石的反应边,石榴石外围有堇青石和斜方辉石的后成合晶。最后黑云母和斜方辉石分解为黑云母标志着高级变质作用的结束。内蒙古土贵乌拉地区超高温变质岩经历了逆时针的 P-T 演化特点。