Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to ...Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.展开更多
Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combin...Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.展开更多
Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and neg...Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and negative charges renders the zwitterion-based materials with electrostatically induced hydration properties, which enables a high resistance towards oily pollutants, nonspecific protein adsorption, bacterial adhesion and biofilm formation. This review starts from the working mechanism of zwitterions and covers the fabrication strategies of zwitterion-based functional coatings, namely the zwitterion-bearing binder route, the zwitterion-bearing additive route and the post-generation of coatings containing zwitterionic precursors. The applications of zwitterion-based functional coatings are discussed, including medical implants, marine antifouling and oil-resistant coatings, with focus on the relevant mechanisms of the zwitterion-containing coatings for a specific performance. Finally, some comments and perspectives on the current situation and future development of zwitterion-based functional coatings are given.展开更多
This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units....This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units. The capsaicin is mixed with a silicon dioxide and then solubilized into a free-flowing homogeneous liquid oleoresin composition by adding a solvent to increase solubility and facilitate mixing. The oleoresin capsaicin liquid solution is mixed with a suitable corrosion resistant epoxy resin, which is then mixed with a hardening catalyst and applied to the surface to be treated.展开更多
Using natural product-based antifouling coatings has proven to be an effective strategy to combat biofouling.However,their antifouling mechanisms are still unclear.In this study,the antifouling mechanism of natural pr...Using natural product-based antifouling coatings has proven to be an effective strategy to combat biofouling.However,their antifouling mechanisms are still unclear.In this study,the antifouling mechanism of natural product-based coatings consisting of bio-sourced poly(lactic acid)-based polyurethane and ecofriendly antifoulant(butenolide)derived from marine bacteria was revealed by observing 3D bacterial motions utilizing a 3D tracking technique-digital holographic microscopy(DHM).As butenolide content increases,the density of planktonic marine bacteria(Pseudomonas sp.)near the surface decreases and thus leads to a reduced adhesion,indicating that butenolide elicits the adaptive response of Pseudomonas sp.to escape from the surface.Meanwhile,among these remained cells,an increased percentage is found to undergo subdiffusive motions compared with the case of smaller dose of butenolide.Further experiments show that butenolide can accelerate their swimming velocity and reduce flick frequency.Antibacterial assay confirms that butenolide-based coating shows high efficacy of antifouling performance against Pseudomonas sp.but without killing them like 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one(DCOIT).展开更多
Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating...Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating fouling in the marine environment.Meanwhile,nanocomposite polymer coatings are a novel generation of antifouling coatings with merits of toxin-free chemical composition and ease of large-scale application.Nanomaterials such as nano-metals,nano-metal oxides,metal-organic frameworks,carbon-based nanostructures,MXene,and nanoclays have antibacterial and antifouling properties in the polymer coatings.Besides,these nanomaterials can improve the corrosion resistance,mechanical strength,weathering stability,and thermal resistance of the polymer coatings.Therefore,in this review paper,the antifouling nanocomposite coatings are introduced and antifouling mechanisms are discussed.This review explicitly indicates that the antifouling efficiency of the nanocomposite coatings depends on the properties of the polymer matrix,the inherent properties of the nanomaterials,the weight percent and the dispersion method of the nanomaterials within the coating matrix,and the chemicals used for modifying the surface of the nanomaterials;meanwhile,the hybrids of different nanomaterials and appropriate chemical agents could be used to improve the antifouling behavior of the prepared nanocomposites.Moreover,the theoretical studies are introduced to pave the way of researchers working on theantifouling coatings,and the importance of the theoretical studies and computational modeling along with the experimental research is notified to develop antifouling coatings with high efficiency.展开更多
基金Supported by the National Natural Science Foundation of China(21006020,21276060,21276062)the Application Basic Research Plan Key Basic Research Project of Hebei Province(11965150D)the Natural Science Foundation of Tianjin(13JCYBJC18500)
文摘Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.
基金supported by the National Natural Science Foundation of China(Nos.52273073,U2241286 and 52003082)National Key Research and Development Program of China(No.2022YFB3806403)Fundamental Research Funds for the Central Universities.
文摘Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.
基金Sponsored by the National Key Research and Development Program of China(Grant No.2020YFE0100300)the National Natural Science Foundation of China(Grant No.51973036)。
文摘Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and negative charges renders the zwitterion-based materials with electrostatically induced hydration properties, which enables a high resistance towards oily pollutants, nonspecific protein adsorption, bacterial adhesion and biofilm formation. This review starts from the working mechanism of zwitterions and covers the fabrication strategies of zwitterion-based functional coatings, namely the zwitterion-bearing binder route, the zwitterion-bearing additive route and the post-generation of coatings containing zwitterionic precursors. The applications of zwitterion-based functional coatings are discussed, including medical implants, marine antifouling and oil-resistant coatings, with focus on the relevant mechanisms of the zwitterion-containing coatings for a specific performance. Finally, some comments and perspectives on the current situation and future development of zwitterion-based functional coatings are given.
文摘This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units. The capsaicin is mixed with a silicon dioxide and then solubilized into a free-flowing homogeneous liquid oleoresin composition by adding a solvent to increase solubility and facilitate mixing. The oleoresin capsaicin liquid solution is mixed with a suitable corrosion resistant epoxy resin, which is then mixed with a hardening catalyst and applied to the surface to be treated.
基金financially supported by the National Natural Science Foundation of China(Nos.51673074,21973032 and 21637001)the Fundamental Research Funds for the Central Universities(No.2019ZD02)the Fund of the Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province(No.2019B030301003)。
文摘Using natural product-based antifouling coatings has proven to be an effective strategy to combat biofouling.However,their antifouling mechanisms are still unclear.In this study,the antifouling mechanism of natural product-based coatings consisting of bio-sourced poly(lactic acid)-based polyurethane and ecofriendly antifoulant(butenolide)derived from marine bacteria was revealed by observing 3D bacterial motions utilizing a 3D tracking technique-digital holographic microscopy(DHM).As butenolide content increases,the density of planktonic marine bacteria(Pseudomonas sp.)near the surface decreases and thus leads to a reduced adhesion,indicating that butenolide elicits the adaptive response of Pseudomonas sp.to escape from the surface.Meanwhile,among these remained cells,an increased percentage is found to undergo subdiffusive motions compared with the case of smaller dose of butenolide.Further experiments show that butenolide can accelerate their swimming velocity and reduce flick frequency.Antibacterial assay confirms that butenolide-based coating shows high efficacy of antifouling performance against Pseudomonas sp.but without killing them like 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one(DCOIT).
基金supported financially by the CAS President’s International Fellowship Initiative 2019(PIFI,No.2019PE0059)CAS-VPST Silk Road Science Fund 2021(133137KYSB20200034)INSF’s Project No.99010368。
文摘Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating fouling in the marine environment.Meanwhile,nanocomposite polymer coatings are a novel generation of antifouling coatings with merits of toxin-free chemical composition and ease of large-scale application.Nanomaterials such as nano-metals,nano-metal oxides,metal-organic frameworks,carbon-based nanostructures,MXene,and nanoclays have antibacterial and antifouling properties in the polymer coatings.Besides,these nanomaterials can improve the corrosion resistance,mechanical strength,weathering stability,and thermal resistance of the polymer coatings.Therefore,in this review paper,the antifouling nanocomposite coatings are introduced and antifouling mechanisms are discussed.This review explicitly indicates that the antifouling efficiency of the nanocomposite coatings depends on the properties of the polymer matrix,the inherent properties of the nanomaterials,the weight percent and the dispersion method of the nanomaterials within the coating matrix,and the chemicals used for modifying the surface of the nanomaterials;meanwhile,the hybrids of different nanomaterials and appropriate chemical agents could be used to improve the antifouling behavior of the prepared nanocomposites.Moreover,the theoretical studies are introduced to pave the way of researchers working on theantifouling coatings,and the importance of the theoretical studies and computational modeling along with the experimental research is notified to develop antifouling coatings with high efficiency.