Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO...Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system.展开更多
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ...Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress.展开更多
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves...Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance.展开更多
Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)...Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)(100%,75%,and 50%)to investigate the effects of exogenously supplied nitric oxide(NO)donor sodium nitroprusside(SNP)as foliar treatments at concentrations of 0.0 mmol/L,0.5 mmol/L,1.0 mmol/L,and 2.0 mmol/L.Drought stress led to a significant decrease in plant growth,photosynthetic pigments,yield components such as oil and total carbohydrate percentage.It also resulted in an increase in leaf H2O2 production,lipid peroxidation levels and activities of enzymatic antioxidants including polyphenol oxidase,superoxide dismutase,and nitrate reductase enzymes.However,foliar application of SNP improved photosynthetic pigments and antioxidant defense system which mitigated the negative impact of water stress on growth and yield productivity by reducing oxidative damage caused by reactive oxygen species accumulation.The use of SNP also decreased H_(2)O_(2) accumulation levels,lipid peroxidation levels,and improved membrane stability.SNP treatment at concentration of 2 mmol/L showed superior results compared to other concentrations with extremely significant increases observed in yield characteristics such as oil content,total carbohydrate percentages,and unsaturated fatty acids to saturated fatty acids ratio.展开更多
Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improvi...Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied.In this experiment,the strawberries were soaked in 0,100,200,300,400,and 500 mg L^(−1) EA,respectively,and the influential EA on fruit quality and the antioxidant system of strawberries were studied.Compared with the control,EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and augment the soluble solid content(SSC).EA treatment can also increase the content of related stuff and enzyme activity in antioxidant systems;the gene expression level of polyphenol oxidase(PPO)in strawberries treated with EA was always down-regulated,correspondingly,the expression of other antioxidant enzyme genes was enhanced.Among the strawberry fruits treated with EA of different concentrations,300 mg L^(−1) EA had the best effect in the process of strawberry preservation.The results suggested that the proper concentration of exogenous EA at 300 mg L−1 could maintain strawberries’quality and enhance the antioxidant system by improving the activities of antioxidative enzymes and the ascorbateglutathione(AsA-GSH)cycle during storage.展开更多
Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and...Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and toxic effects on renal capillaries and tubules. Patients with CI-AKI are more likely to experience adverse events, including longer hospital stay and costs, longer ICU stay, and higher mortality rates. This article elaborates on the definition, epidemiology, risk factors, pathogenesis, and prevention strategies of CI-AKI. Methods: We conducted an extensive literature search using contrast agents and AKI as keywords to identify relevant studies on CI-AKI. Conclusion: CI-AKI is a significant clinical challenge that requires a multifaceted approach to prevention and management. Understanding the risk factors, pathophysiology, and current best practices is essential for healthcare providers to optimize patient care and improve outcomes in those undergoing contrast-enhanced imaging procedures. Hydration therapy is currently the main prevention method, but antioxidants may also become a new strategy.展开更多
Oxidative stress induced by factors such as ammonia nitrogen has become a major issue in shrimp farming.The effects of carotenoids on the growth and antioxidant capability of Litopenaeus vannamei juveniles were invest...Oxidative stress induced by factors such as ammonia nitrogen has become a major issue in shrimp farming.The effects of carotenoids on the growth and antioxidant capability of Litopenaeus vannamei juveniles were investigated in this study using dietary archaeal carotenoids supplementation.For four weeks,shrimp were given diets containing 0 mg/kg(Ctrl)and 55.98 mg/kg(Car)archaeal carotenoids.Dietary archaeal carotenoids significantly enhanced the astaxanthin content in shrimp muscles and carapaces,as well as the superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)activity(P<0.05).The malonaldehyde(MDA)content in Car group significantly decreased(P<0.05).The transcriptome analysis was conducted to determine the molecular processes in response to archaeal carotenoids supplementation.A total of 1536 differentially expressed genes(DEGs)were detected,including 538 upregulated DEGs and 998 downregulated DEGs.GO functional enrichment analysis between Ctrl and Car indicated that 26 GO terms including extracellular region,metabolic process,and proteolysis were enriched.The KEGG pathway enrichment analysis revealed that the amino sugar and nucleotide sugar metabolism,cysteine and methionine metabolism,glycine serine and threonine metabolism,and amino acid biosynthesis were enriched.Archaeal carotenoids influenced the expression of several important genes involved in reactive oxygen species(ROS)generation,Nrf2 signaling,and antioxidant enzymes.Seven DEGs were chosen to confirm the RNA-Seq data using qRT-PCR.The genes and pathways discovered in this work assist to elucidate the molecular processes through which archaeal carotenoid enhances L.vannamei antioxidative system.展开更多
Uncovering the mechanism of hydrogen sulfide(H2S)in improving rice seed germination under aluminum(Al)toxicity conditions is important for rice production in acidic soil.In the present study,an Al sensitive rice varie...Uncovering the mechanism of hydrogen sulfide(H2S)in improving rice seed germination under aluminum(Al)toxicity conditions is important for rice production in acidic soil.In the present study,an Al sensitive rice variety Kasalath was used.Pretreatment with 0.1 mmol/L sodium hydrosulfide(NaHS,H2S donor)under 70 mmol/L AlCl3(indicated as Al+NaHS treatment)increased rice seed germination by 27.95%,germination potential by 474.16%,and the germination index by 43.44%,compared with Al treatment.The treatment of Al+NaHS reduced the Al content in rice seeds by 16.31%and 32.11%and increased the internal H2S content by 3.82%and 8.90%at 3 and 5 d of treatment,respectively,compared with Al treatment.Al+NaHS treatment significantly increased the activities of superoxide dismutase(SOD)。展开更多
It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herei...It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herein,we proposed a facile strategy to synthesize a multifunctional vegetable oil-based lubricant via the lignin derivative vanillin coupled to amine and diethyl phosphite to produce a lubricating additive with both extreme pressure and antioxidant properties.Compared with pure tung oil,the lubricating and antioxidant performance of tung oil is significantly improved after adding additives.Adding the 1.0 wt%additive to the tung oil reduced the friction wear coefficient and the volume,and the oxidation induction time was much longer than pure tung oil.展开更多
Chinese peony(Paeonia lactiflora Pall.)is both medicinally and aesthetically beneficial.Powdery mildew is a common fungal disease that seriously jeopardizes the value of numerous species,including peonies as a crop.In...Chinese peony(Paeonia lactiflora Pall.)is both medicinally and aesthetically beneficial.Powdery mildew is a common fungal disease that seriously jeopardizes the value of numerous species,including peonies as a crop.In order to provide a basis for the prevention and treatment of peony powdery mildew,we examined the microbial diversity,the malondialdehyde(MDA)concentrations and antioxidant enzyme activities of peony leaves infected with three levels of powdery mildew to determine any modifications to the leaf's antioxidant enzyme systems and microbial community structure following the onset of disease.The results show that the MDA content rose as the degree of infection became worse.Antioxidant enzyme activity rose and then declined.Following the initiation of powdery mildew,fungal community diversity decreased,whereas there was not any appreciable change in bacterial communities according to microbial diversity sequencing.The relative abundance of more than half of fungal species decreased,with the bacterial genera displaying both abundant and diminished communities with less pronounced alterations in their community structure after the disease spread.Significant different taxa that were critical to the organization of each microbiome were found.Correlation analysis showed that the relative abundance of powdery mildew pathogenic fungal genus Erysiphe was correlated with those of 11 fungal genera and one bacterial genus.Among them,Aureobasidium,Neosetophoma and Sclerostagonospora showed significant positive correlations with Erysiphe and MDA.展开更多
Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of en...Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.展开更多
Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms.The sponge’s secondary metabolites demonstrated various bioactivities and pot...Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms.The sponge’s secondary metabolites demonstrated various bioactivities and potential pharmacological properties.This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro.The review was performed in accordance with PRISMA guidelines.The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro.Searching in three different databases,two hundred articles were selected.After screening abstracts,titles and evaluating for eligibility of manuscripts 14 articles were included.The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl(DPPH)and measurement of intracellular reactive oxygen species(ROS).It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro.Scientific evidence of the studies included in this review was accessed by the GRADE analysis.Terpenes play an important ecological role,moreover these molecules have a pharmaceutical and industrial application.展开更多
Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the pla...Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.展开更多
Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed...Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.展开更多
To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor tr...To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor treatment was performed by changing the manganese chloride(MnCl_(2)·4H_(2)O)solution concentration when spraying the leaves.The expression levels of Mn-SOD,POD64 and POD27 genes in leaves were quantitatively analyzed by real-time quantitative PCR(qRT-PCR)at different determination times.Meanwhile,the contents of malondial-dehyde(MDA),hydrogen peroxide(H_(2)O_(2)),the activities of antioxidant enzymes,including catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD).The results showed that the SOD,CAT,POD,ascorbate peroxidase(APX),and reduced glutathione(GSH)activities in leaves were the highest at 12 h post-treatment with 50μM MnCl_(2)·4H_(2)O.Furthermore,the contents of MDA and H_(2)O_(2) in leaves also peaked when the concentration of H_(2)O_(2) is 50μM,which is the minimum value.Additionally at 50μM Mn^(2+),the Mn-SOD and POD27 expression was up-regulated as compared to the control,which promoted the expression of their respective enzyme activities.However,POD64 expression increased with the increasing Mn^(2+) concentration.Therefore,50μM is the optimal concentration of Mn when exogenously applied on“Hong yang”,which improve the antioxidant enzyme activity and regulate the plant’s physiological and biochemical functions.展开更多
It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antiox...It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antioxidant defence systems in symptomatic and asymptomatic Plasmodium falciparum malaria infection in children (1 - 15 years old) in the Mount Cameroon vicinity. This cross-sectional study involved blood samples collected from 473 children and examined for malaria parasitaemia. Full blood counts were performed using an automated haemoanalyser. Serum oxidative stress status (malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and vitamin C (Vit C)) were each determined by colorimetric enzymatic assays. The prevalence of malaria parasite infection was 32.1% among the participants. Out of that, 62.5% of patients with parasitaemia were symptomatic. Anaemia prevalence increased significantly with parasite density. MDA levels were significantly higher in patients with malaria symptoms than in those without symptoms. A significant and positive correlation was detected between MDA (r = 0.831, P < 0.05), NO (r = 0.779, P < 0.05), and malaria parasite density while, a significant and negative relationship occurred between parasite density and GSH (r = ?0.763, P < 0.05) and Vit C (r = ?0.826, P < 0.05) levels, SOD (r = ?0.621, P < 0.05) and CAT (r = ?0.817, P < 0.05) activities. The SOD activity and GSH level significantly decreased (P < 0.05) with an increase in the MDA levels. These findings showed that MDA and nitric oxide levels increased both in malaria participants with or without symptoms. A similar decrease in the antioxidant defence system was observed in both symptomatic and asymptomatic patients. Therefore, there is a need to develop public health policies that encourage routine diagnosis and treatment of malaria in seemingly healthy people (asymptomatic cases), and this will play an essential role in controlling malaria in tropical countries.展开更多
[Objective] The paper aims to study the effects of drought stress on antioxidation system of different Citrus rootstock leaves. [Method] Potted plant experiments were carried out to control the water content of soil i...[Objective] The paper aims to study the effects of drought stress on antioxidation system of different Citrus rootstock leaves. [Method] Potted plant experiments were carried out to control the water content of soil in pots,in order to investigate the effects of drought stress on antioxidation system activity (SOD,POD and CAT) and the content of protein,GSH,MDA and O-·2 from the leaves of Shandong Zhike,Ningminju,Yangshuojinbaosuanju,Huapijinju and Guizhi No.1. [Result] The content of chlorophyll a,chlorophyll b and chlorophyll (a+b) from the test 5 breeds decreased with the enhancement of drought stress,and there were significant differences between them and the control under the severe stress; the activities of SOD,POD and CAT from the 5 breeds increased as the drought stress strengthened; the content of soluble protein declined while that of GSH,MDA and O-·2 rose because of the drought stress. [Conclusion] This research provided a good reference to choose the breeds of citrus rootstocks in arid and semi-arid areas.展开更多
Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatt...Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatty liver hemorrhagic syndrome(FLHS)in laying hens and the underlying mechanisms remain to be elucidated.Here,we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota.Results The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet(HFD)-induced FLHS laying hen model by decreasing the levels of TG,TC,ALT and ALP.The lipid accumulation and pathological score of liver were also relieved after GBE treatment.Moreover,GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH,SOD,T-AOC,GSH-PX and reducing MDA,and downregulated the expression of genes related to lipid synthesis(FAS,LXRα,GPAT1,PPARγand Ch REBP1)and inflammatory cytokines(TNF-α,IL-6,TLR4 and NF-κB)in the liver.Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota,particularly elevated the abundance of Megasphaera in the cecum.Meanwhile,targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs,acetate and propionate,which were positively correlated with the GBE-enriched gut microbiota.Finally,we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation(FMT).Conclusions We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota.Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experi...[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.展开更多
基金financially supported by the Chief Scientist of the Ministry of Agriculture,grant number 20-04-0015,Rishon Lezion,Israel。
文摘Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system.
基金This paper was supported by Universiti Putra Malaysia,Innohub Grant Scheme(Vote No.9005004)D’Khairan Farm Sdn Bhd(Vote No.6300349).
文摘Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress.
基金supported by National Programs for Coordinated Promotion of Major Agricultural Technologies(Grant No.2021-ZYXT-02–1)Key Projects of Key research and Development Programs of Jiangsu Province(Grant No.BE2021323)+2 种基金the“333 Project”Scientific Research Project of Jiangsu Province(Grant No.70)Rural Revitalization Project of Huai’an(Grant No.HAN202312)Talent Introduction Research Project of Huaiyin Institute of Technology(Z301B22504).
文摘Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance.
文摘Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)(100%,75%,and 50%)to investigate the effects of exogenously supplied nitric oxide(NO)donor sodium nitroprusside(SNP)as foliar treatments at concentrations of 0.0 mmol/L,0.5 mmol/L,1.0 mmol/L,and 2.0 mmol/L.Drought stress led to a significant decrease in plant growth,photosynthetic pigments,yield components such as oil and total carbohydrate percentage.It also resulted in an increase in leaf H2O2 production,lipid peroxidation levels and activities of enzymatic antioxidants including polyphenol oxidase,superoxide dismutase,and nitrate reductase enzymes.However,foliar application of SNP improved photosynthetic pigments and antioxidant defense system which mitigated the negative impact of water stress on growth and yield productivity by reducing oxidative damage caused by reactive oxygen species accumulation.The use of SNP also decreased H_(2)O_(2) accumulation levels,lipid peroxidation levels,and improved membrane stability.SNP treatment at concentration of 2 mmol/L showed superior results compared to other concentrations with extremely significant increases observed in yield characteristics such as oil content,total carbohydrate percentages,and unsaturated fatty acids to saturated fatty acids ratio.
基金the National Natural Science Foundation of China,Grant Number 31800581.
文摘Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied.In this experiment,the strawberries were soaked in 0,100,200,300,400,and 500 mg L^(−1) EA,respectively,and the influential EA on fruit quality and the antioxidant system of strawberries were studied.Compared with the control,EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and augment the soluble solid content(SSC).EA treatment can also increase the content of related stuff and enzyme activity in antioxidant systems;the gene expression level of polyphenol oxidase(PPO)in strawberries treated with EA was always down-regulated,correspondingly,the expression of other antioxidant enzyme genes was enhanced.Among the strawberry fruits treated with EA of different concentrations,300 mg L^(−1) EA had the best effect in the process of strawberry preservation.The results suggested that the proper concentration of exogenous EA at 300 mg L−1 could maintain strawberries’quality and enhance the antioxidant system by improving the activities of antioxidative enzymes and the ascorbateglutathione(AsA-GSH)cycle during storage.
文摘Background: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of AKI in hospitalized patients. Contrast agents mainly cause acute kidney injury through hypoxic damage to renal parenchyma and toxic effects on renal capillaries and tubules. Patients with CI-AKI are more likely to experience adverse events, including longer hospital stay and costs, longer ICU stay, and higher mortality rates. This article elaborates on the definition, epidemiology, risk factors, pathogenesis, and prevention strategies of CI-AKI. Methods: We conducted an extensive literature search using contrast agents and AKI as keywords to identify relevant studies on CI-AKI. Conclusion: CI-AKI is a significant clinical challenge that requires a multifaceted approach to prevention and management. Understanding the risk factors, pathophysiology, and current best practices is essential for healthcare providers to optimize patient care and improve outcomes in those undergoing contrast-enhanced imaging procedures. Hydration therapy is currently the main prevention method, but antioxidants may also become a new strategy.
基金Supported by the Project of China One-Belt-One-Road Foreign Expert Research Collaboration,Ministry of Science and Technology,China (No.DL2021002001L)the Open Project Program of State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science&Technology (No.SKLFNS-KF-202205)。
文摘Oxidative stress induced by factors such as ammonia nitrogen has become a major issue in shrimp farming.The effects of carotenoids on the growth and antioxidant capability of Litopenaeus vannamei juveniles were investigated in this study using dietary archaeal carotenoids supplementation.For four weeks,shrimp were given diets containing 0 mg/kg(Ctrl)and 55.98 mg/kg(Car)archaeal carotenoids.Dietary archaeal carotenoids significantly enhanced the astaxanthin content in shrimp muscles and carapaces,as well as the superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)activity(P<0.05).The malonaldehyde(MDA)content in Car group significantly decreased(P<0.05).The transcriptome analysis was conducted to determine the molecular processes in response to archaeal carotenoids supplementation.A total of 1536 differentially expressed genes(DEGs)were detected,including 538 upregulated DEGs and 998 downregulated DEGs.GO functional enrichment analysis between Ctrl and Car indicated that 26 GO terms including extracellular region,metabolic process,and proteolysis were enriched.The KEGG pathway enrichment analysis revealed that the amino sugar and nucleotide sugar metabolism,cysteine and methionine metabolism,glycine serine and threonine metabolism,and amino acid biosynthesis were enriched.Archaeal carotenoids influenced the expression of several important genes involved in reactive oxygen species(ROS)generation,Nrf2 signaling,and antioxidant enzymes.Seven DEGs were chosen to confirm the RNA-Seq data using qRT-PCR.The genes and pathways discovered in this work assist to elucidate the molecular processes through which archaeal carotenoid enhances L.vannamei antioxidative system.
基金funded by the National Natural Science Foundation of China (Grant No. 31901452)
文摘Uncovering the mechanism of hydrogen sulfide(H2S)in improving rice seed germination under aluminum(Al)toxicity conditions is important for rice production in acidic soil.In the present study,an Al sensitive rice variety Kasalath was used.Pretreatment with 0.1 mmol/L sodium hydrosulfide(NaHS,H2S donor)under 70 mmol/L AlCl3(indicated as Al+NaHS treatment)increased rice seed germination by 27.95%,germination potential by 474.16%,and the germination index by 43.44%,compared with Al treatment.The treatment of Al+NaHS reduced the Al content in rice seeds by 16.31%and 32.11%and increased the internal H2S content by 3.82%and 8.90%at 3 and 5 d of treatment,respectively,compared with Al treatment.Al+NaHS treatment significantly increased the activities of superoxide dismutase(SOD)。
基金Funding Statement:This work was supported by National Natural Science Foundation of China[No.31901260]Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes[No.CAFYBB2019SY037].
文摘It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herein,we proposed a facile strategy to synthesize a multifunctional vegetable oil-based lubricant via the lignin derivative vanillin coupled to amine and diethyl phosphite to produce a lubricating additive with both extreme pressure and antioxidant properties.Compared with pure tung oil,the lubricating and antioxidant performance of tung oil is significantly improved after adding additives.Adding the 1.0 wt%additive to the tung oil reduced the friction wear coefficient and the volume,and the oxidation induction time was much longer than pure tung oil.
基金supported by grants from“Cataloguing,flora study and database establishment of mini-type fungi in Northeast Asia”from the Northeast Asia Biodiversity Research Center。
文摘Chinese peony(Paeonia lactiflora Pall.)is both medicinally and aesthetically beneficial.Powdery mildew is a common fungal disease that seriously jeopardizes the value of numerous species,including peonies as a crop.In order to provide a basis for the prevention and treatment of peony powdery mildew,we examined the microbial diversity,the malondialdehyde(MDA)concentrations and antioxidant enzyme activities of peony leaves infected with three levels of powdery mildew to determine any modifications to the leaf's antioxidant enzyme systems and microbial community structure following the onset of disease.The results show that the MDA content rose as the degree of infection became worse.Antioxidant enzyme activity rose and then declined.Following the initiation of powdery mildew,fungal community diversity decreased,whereas there was not any appreciable change in bacterial communities according to microbial diversity sequencing.The relative abundance of more than half of fungal species decreased,with the bacterial genera displaying both abundant and diminished communities with less pronounced alterations in their community structure after the disease spread.Significant different taxa that were critical to the organization of each microbiome were found.Correlation analysis showed that the relative abundance of powdery mildew pathogenic fungal genus Erysiphe was correlated with those of 11 fungal genera and one bacterial genus.Among them,Aureobasidium,Neosetophoma and Sclerostagonospora showed significant positive correlations with Erysiphe and MDA.
基金supported by the Shandong Province’s Natural Science Foundation(No.ZR2019MD033).
文摘Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.
基金the FAPESP(Fundação de AmparoàPesquisa do Estado de São Paulo)A.C.M.R(2019/10228-5)A.C.C.A.(2019/19708-0).FAPEG(Fundação de AmparoàPesquisa do Estado de Goiás)L.R.F.S(202110267000075).
文摘Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms.The sponge’s secondary metabolites demonstrated various bioactivities and potential pharmacological properties.This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro.The review was performed in accordance with PRISMA guidelines.The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro.Searching in three different databases,two hundred articles were selected.After screening abstracts,titles and evaluating for eligibility of manuscripts 14 articles were included.The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl(DPPH)and measurement of intracellular reactive oxygen species(ROS).It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro.Scientific evidence of the studies included in this review was accessed by the GRADE analysis.Terpenes play an important ecological role,moreover these molecules have a pharmaceutical and industrial application.
基金supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korean Government(MSIT)(No.2022R1A2C1008993).
文摘Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.
文摘Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.
基金supported by the following grants:Science and Technology Support Plan of Guizhou Province:Breeding Research and Demonstration of All-Red Bud Transformation of“GH-1”Clone of“Hong Yang”Kiwifruit(Guizhou Family Combination Support[2021]General 234)Innovation Capacity Construction Project of Scientific Research Institutions in Guizhou Province:Technology R&D and Service Capacity Construction of Fine Fruit(Kiwifruit,Passion Fruit)Industry in Guizhou Province[2019]4004the National Key Research and Development Program“Quality and Efficiency Improvement Technology Integration and Demonstration of Advantageous Characteristic Industries in Guizhou Karst Mountain Area(2021YFD1100300)”Post-Subsidy Fund.
文摘To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor treatment was performed by changing the manganese chloride(MnCl_(2)·4H_(2)O)solution concentration when spraying the leaves.The expression levels of Mn-SOD,POD64 and POD27 genes in leaves were quantitatively analyzed by real-time quantitative PCR(qRT-PCR)at different determination times.Meanwhile,the contents of malondial-dehyde(MDA),hydrogen peroxide(H_(2)O_(2)),the activities of antioxidant enzymes,including catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD).The results showed that the SOD,CAT,POD,ascorbate peroxidase(APX),and reduced glutathione(GSH)activities in leaves were the highest at 12 h post-treatment with 50μM MnCl_(2)·4H_(2)O.Furthermore,the contents of MDA and H_(2)O_(2) in leaves also peaked when the concentration of H_(2)O_(2) is 50μM,which is the minimum value.Additionally at 50μM Mn^(2+),the Mn-SOD and POD27 expression was up-regulated as compared to the control,which promoted the expression of their respective enzyme activities.However,POD64 expression increased with the increasing Mn^(2+) concentration.Therefore,50μM is the optimal concentration of Mn when exogenously applied on“Hong yang”,which improve the antioxidant enzyme activity and regulate the plant’s physiological and biochemical functions.
文摘It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antioxidant defence systems in symptomatic and asymptomatic Plasmodium falciparum malaria infection in children (1 - 15 years old) in the Mount Cameroon vicinity. This cross-sectional study involved blood samples collected from 473 children and examined for malaria parasitaemia. Full blood counts were performed using an automated haemoanalyser. Serum oxidative stress status (malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and vitamin C (Vit C)) were each determined by colorimetric enzymatic assays. The prevalence of malaria parasite infection was 32.1% among the participants. Out of that, 62.5% of patients with parasitaemia were symptomatic. Anaemia prevalence increased significantly with parasite density. MDA levels were significantly higher in patients with malaria symptoms than in those without symptoms. A significant and positive correlation was detected between MDA (r = 0.831, P < 0.05), NO (r = 0.779, P < 0.05), and malaria parasite density while, a significant and negative relationship occurred between parasite density and GSH (r = ?0.763, P < 0.05) and Vit C (r = ?0.826, P < 0.05) levels, SOD (r = ?0.621, P < 0.05) and CAT (r = ?0.817, P < 0.05) activities. The SOD activity and GSH level significantly decreased (P < 0.05) with an increase in the MDA levels. These findings showed that MDA and nitric oxide levels increased both in malaria participants with or without symptoms. A similar decrease in the antioxidant defence system was observed in both symptomatic and asymptomatic patients. Therefore, there is a need to develop public health policies that encourage routine diagnosis and treatment of malaria in seemingly healthy people (asymptomatic cases), and this will play an essential role in controlling malaria in tropical countries.
基金Supported by Natural Science Foundation in Guangxi Province(0728040)~~
文摘[Objective] The paper aims to study the effects of drought stress on antioxidation system of different Citrus rootstock leaves. [Method] Potted plant experiments were carried out to control the water content of soil in pots,in order to investigate the effects of drought stress on antioxidation system activity (SOD,POD and CAT) and the content of protein,GSH,MDA and O-·2 from the leaves of Shandong Zhike,Ningminju,Yangshuojinbaosuanju,Huapijinju and Guizhi No.1. [Result] The content of chlorophyll a,chlorophyll b and chlorophyll (a+b) from the test 5 breeds decreased with the enhancement of drought stress,and there were significant differences between them and the control under the severe stress; the activities of SOD,POD and CAT from the 5 breeds increased as the drought stress strengthened; the content of soluble protein declined while that of GSH,MDA and O-·2 rose because of the drought stress. [Conclusion] This research provided a good reference to choose the breeds of citrus rootstocks in arid and semi-arid areas.
基金funded by the National Key Research and Development Program of China(2022YFA1304201)the Beijing Natural Science Foundation(6222032)+2 种基金the Starting Grants Program for Young Talents at China Agricultural Universitythe 2115 Talent Development Program of China Agricultural UniversityChinese Universities Scientific Fund。
文摘Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatty liver hemorrhagic syndrome(FLHS)in laying hens and the underlying mechanisms remain to be elucidated.Here,we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota.Results The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet(HFD)-induced FLHS laying hen model by decreasing the levels of TG,TC,ALT and ALP.The lipid accumulation and pathological score of liver were also relieved after GBE treatment.Moreover,GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH,SOD,T-AOC,GSH-PX and reducing MDA,and downregulated the expression of genes related to lipid synthesis(FAS,LXRα,GPAT1,PPARγand Ch REBP1)and inflammatory cytokines(TNF-α,IL-6,TLR4 and NF-κB)in the liver.Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota,particularly elevated the abundance of Megasphaera in the cecum.Meanwhile,targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs,acetate and propionate,which were positively correlated with the GBE-enriched gut microbiota.Finally,we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation(FMT).Conclusions We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota.Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
文摘[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.