期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的ResNet与IMU位姿图像特征描述子
1
作者 陈守刚 张伟伟 赵波 《智能计算机与应用》 2022年第9期198-202,207,共6页
基于深度学习的图像特征描述子,是许多3D视觉任务的重要组成部分,但现有的基于深度学习的图像特征描述子框架,通常需要特征点之间的真实对应关系来进行训练,而要想大规模获取这些对应的特征点却具有很大的挑战性。本文提出了一种新的弱... 基于深度学习的图像特征描述子,是许多3D视觉任务的重要组成部分,但现有的基于深度学习的图像特征描述子框架,通常需要特征点之间的真实对应关系来进行训练,而要想大规模获取这些对应的特征点却具有很大的挑战性。本文提出了一种新的弱监督学习框架,该框架只需从与图像相关联的惯性测量单元位姿中学习特征描述子。基于此,本文构造了新的损失函数,该函数利用IMU位姿所给定的对极约束,方法稳定且高效。因为本方法不需要特征点之间的真实对应关系,所以在庞大且多样化的数据集上训练效果更好,为更具有区分性的局部特征描述子提供了可能。本文将学习到的特征描述子称为POSE描述子,经过严格的监督训练,POSE描述子比之前基于完全监督的特征描述子更好,且数量和匹配度均有所提高。 展开更多
关键词 深度学习 IMU位姿 特征描述子 对极约束
下载PDF
Applications of gauge duality in robust principal component analysis and semidefinite programming
2
作者 MA ShiQian YANG JunFeng 《Science China Mathematics》 SCIE CSCD 2016年第8期1579-1592,共14页
Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid... Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid full matrix decompositions such as singular value and/or eigenvalue decompositions. In such an approach, a gauge dual problem is solved in the first stage, and then an optimal solution to the primal problem can be recovered from the dual optimal solution obtained in the first stage. Recently, this theory has been applied to a class of semidefinite programming (SDP) problems with promising numerical results by Friedlander and Mac^to (2016). We establish some theoretical results on applying the gauge duality theory to robust principal component analysis (PCA) and general SDP. For each problem, we present its gauge dual problem, characterize the optimality conditions for the primal-dual gauge pair, and validate a way to recover a primal optimal solution from a dual one. These results are extensions of Friedlander and Macedo (2016) from nuclear norm regularization to robust PCA and from a special class of SDP which requires the coefficient matrix in the linear objective to be positive definite to SDP problems without this restriction. Our results provide further understanding in the potential advantages and disadvantages of the gauge duality theory. 展开更多
关键词 gauge optimization gauge duality polar function antipolar set singular value decomposition robust principal component analysis semidefinite programming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部