期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Inhibition of Telomerase with hTERT Antisense Increases Susceptibility of Leukemic Cells to CDDP-induced Apoptosis 被引量:1
1
作者 张洹 何冬梅 《The Chinese-German Journal of Clinical Oncology》 CAS 2004年第1期42-46,67,共6页
Objective: To investigated the e?ect of inhibition of telomerase with hTERT antisense on leukemic cells (HL-60 and K562) to CDDP-induced apoptosis. Methods: Antisense phosphorothioate oligodeox... Objective: To investigated the e?ect of inhibition of telomerase with hTERT antisense on leukemic cells (HL-60 and K562) to CDDP-induced apoptosis. Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and puri?ed. Telomerase activity was detected by Telomerase PCR ELASA kit and cell apoptosis was observed by morphological method and determined by ?owcytometry. Results: AS PS-ODN could signi?cantly inhibit telomerase activity by down regulat- ing the hTERT expression, and increase the susceptibility of leukemic cells to CDDP-induced apoptosis. Conclusion: Inhibition of telomerase with hTERT antisense can increases the susceptibility of leukemic cells to CDDP-induced apoptosis. 展开更多
关键词 human telomerase reverse transcriptase antisense phosphorothioate oligodeoxynucleotide TELOMERASE leukemic cells cis-diamminedichloroplatinum
下载PDF
Inhibition of telomerase with human telomerase reverse transcriptase antisense increases the sensitivity of tumor necrosis factor-α-induced apoptosis in prostate cancer cells 被引量:3
2
作者 Xiao-Dong Gao Yi-Rong Chen 《Asian Journal of Andrology》 SCIE CAS CSCD 2007年第5期697-704,共8页
Aim: To investigate the effect of inhibition of telomerase with human telomerase reverse transcriptase (hTERT) antisense on tumor necrosis factor-α (TNF-α-induced apoptosis in prostate cancer cells (PC3). Meth... Aim: To investigate the effect of inhibition of telomerase with human telomerase reverse transcriptase (hTERT) antisense on tumor necrosis factor-α (TNF-α-induced apoptosis in prostate cancer cells (PC3). Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured using the telomeric repeat amplification protocol (TRAP) and polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA was measured by reverse transcription PCR (RT-PCR) assay and gel-image system, hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by morphological method and determined by flow cytometry. Results: The telomerase activity decreased with time after hTERT AS PS-ODN treatment. The levels of hTERT mRNA decreased with time after hTERT AS PS-ODN treatment, which appeared before the decline of the telomerase activity. The percentage of positive cells of hTERT protein declined with time after hTERT AS PS-ODN treatment, which appeared after the decline of hTERT mRNA. There was no difference in telomerase activity, hTERT mRNA and protein levels between hTERT sense phosphorothioate oligodeoxynucleotide (S PS-ODN) and the control group. The cell viability decreased with time after hTERT AS PS-ODN combined with TNF-α treatment. The percentage of apoptosis increased with time after hTERT AS PS-ODN combined with TNF-α treatment. There was no difference in cell viability and the percentage of apoptosis between hTERT S PS-ODN and the control group. Conclusion: hTERT AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression, and inhibition of telomerase with hTERT antisense can enhance TNF-α- induced apoptosis of PC3 cells. 展开更多
关键词 human telomerase reverse transcriptase antisense phosphorothioate oligodeoxynucleotide TELOMERASE prostate cancer cells tumor necrosis factor-α
下载PDF
Inhibition of telomerase with human telomerase reverse transcriptase antisense enhances tumor necrosis factor-a-induced apoptosis in bladder cancer cells 被引量:4
3
作者 GAO Xiao-dong CHEN Yi-rong 《Chinese Medical Journal》 SCIE CAS CSCD 2007年第9期755-760,共6页
Background Telomerase activity is found in 85%-90% of all human cancers but not in their adjacent normal cells. Human telomerase reverse transcriptase (hTERT) is an essential component in the telomerase complex that... Background Telomerase activity is found in 85%-90% of all human cancers but not in their adjacent normal cells. Human telomerase reverse transcriptase (hTERT) is an essential component in the telomerase complex that plays an important role in telomerase activity. This study investigated the effect of the telomerase inhibition with an hTERT antisense oligodeoxynucleotide (ODN) in bladder cancer cells (T24) on tumor necrosis factor-α (TNF-α)-induced apoptosis. Methods Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA expression was measured by reverse transcription polymerase chain reaction (RT-PCR) assay and a gel-image system. hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by a morphological method and determined by flow cytometry. Results AS PS-ODN significantly inhibited telomerase activity and decreased the levels of hTERT mRNA which preceded the decline in the telomerase activity. AS PS-ODN significantly reduced the percentage of positive cells expressing hTERT protein following the decline of hTERT mRNA levels. There was no difference seen in the telomerase activity, hTERT mRNA expression or the protein levels between the sense phosphorothioate oligodeoxynucleotide (SPS-ODN) and the control group. AS PS-ODN treatment significantly decreased the cell viability and enhanced the apoptotic rate of T24 cells in response to TNF-α while there was no difference in cell viability and apoptotic rate between the S PS-ODN and the control group. Conclusions AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression. Treatment with AS PS-ODN may be a potential and most promising strategy for bladder cancer with telomerase activity. 展开更多
关键词 TELOMERASE phosphorothioate antisense oligodeoxynucleotide urinary bladder neoplasms tumor necrosis factor-α
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部