The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The compos...The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction ( XRD ) analysis. Microstructure of the glass- ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750℃ and 950℃ for 1.5 h separately. The relative bulk density could achieve 99% under 1050℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160- 180 MPa and a fracture toughness parameter KIC of aboat 2.1-2.3 were determined for the glass-ceramics.展开更多
The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit...The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.展开更多
In this study, lysine was introduced into the surface of apatite-wollastonite glass ceramic (AW-GC) to improve its cytocompatibility by two steps reaction procedure. Firstly, lysine connected to N-β-(aminoethyl)-...In this study, lysine was introduced into the surface of apatite-wollastonite glass ceramic (AW-GC) to improve its cytocompatibility by two steps reaction procedure. Firstly, lysine connected to N-β-(aminoethyl)-y-aminopropyl trimethoxy silane (A-1120) by covalent binding of amide group. Secondly, the lysine-functionalized A-1120 was deposited on the surface of AW-GC through a silanization reaction involving a covalent attachment. FTIR spectra indicated that lysine had been immobilized onto the surface of AW-GC successfully. Bioactivity of the surface modified AW-GC was investigated by simulated body fluid (SBF), and the in vitro cytocompatibility was evaluated by coculturing with human osteosarcoma cell MG63. The results showed that the process of hydroxyapatite layer formed on the modified material was similar to AW-GC while the mode of hydroxyapatite deposition was changed. The growth of MG63 cells showed that modifying the AW-GC surface with lysine enhances the cell adhesion and proliferation.展开更多
Bioactive glass nanoparticles(BGNs)are widely used in the field of biomedicine,including drug delivery,gene therapy,tumor therapy,bioimaging,molecular markers and tissue engineering.Researchers are interested in using...Bioactive glass nanoparticles(BGNs)are widely used in the field of biomedicine,including drug delivery,gene therapy,tumor therapy,bioimaging,molecular markers and tissue engineering.Researchers are interested in using BGNs in bone,heart and skin regeneration.However,there is inadequate information on skeletal muscle tissue engineering,limited information on the biological effects of BGNs on myoblasts,and the role of bioactive glass composite materials on myogenic differentiation is unknown.Herein,we report the effects of BGNs with different compositions(60Si-BGN,80Si-BGN,100Si-BGN)on the myogenic differentiation in C2C12 cells and in vivo skeletal tissue regeneration.The results showed that 80Si-BGN could efficiently promote the myogenic differentiation of C1C12 cells,including the myotube formation and myogenic gene expression.The in vivo experiment in a rat skeletal muscle defect model also confirmed that 80Si-BGN could significantly improve the complete regeneration of skeletal muscle tissue during 4 weeks implantation.This work firstly demonstrated evidence that BGN could be the bioactive material in enhancing skeletal muscle regeneration.展开更多
制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶...制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.展开更多
文摘The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction ( XRD ) analysis. Microstructure of the glass- ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750℃ and 950℃ for 1.5 h separately. The relative bulk density could achieve 99% under 1050℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160- 180 MPa and a fracture toughness parameter KIC of aboat 2.1-2.3 were determined for the glass-ceramics.
基金Project(2003BA310A31) supported by Ministry of Science and Technology, China
文摘The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.
文摘In this study, lysine was introduced into the surface of apatite-wollastonite glass ceramic (AW-GC) to improve its cytocompatibility by two steps reaction procedure. Firstly, lysine connected to N-β-(aminoethyl)-y-aminopropyl trimethoxy silane (A-1120) by covalent binding of amide group. Secondly, the lysine-functionalized A-1120 was deposited on the surface of AW-GC through a silanization reaction involving a covalent attachment. FTIR spectra indicated that lysine had been immobilized onto the surface of AW-GC successfully. Bioactivity of the surface modified AW-GC was investigated by simulated body fluid (SBF), and the in vitro cytocompatibility was evaluated by coculturing with human osteosarcoma cell MG63. The results showed that the process of hydroxyapatite layer formed on the modified material was similar to AW-GC while the mode of hydroxyapatite deposition was changed. The growth of MG63 cells showed that modifying the AW-GC surface with lysine enhances the cell adhesion and proliferation.
基金supported by the Special Support Program for High Level Talents of Shaanxi Province of China(grant No.TZ0278)the key R&D plan of Shaanxi Province of China(grant No.2021GXLH-Z-052)+4 种基金the Instrument Analysis Center of Xi’an Jiaotong University(for TEM and BET measurements)State Key Laboratory for Manufacturing Systems Engineering of China(grant No.sklms2021006)Young Talent Support Plan of Xi’an Jiaotong University of China(grant No.QY6J003)the key Project of Jiangxi Natural Science Foundation(No.2020ACBL214008)Jiangxi Provincial Natural Science Foundation(No.20224BAB204020).
文摘Bioactive glass nanoparticles(BGNs)are widely used in the field of biomedicine,including drug delivery,gene therapy,tumor therapy,bioimaging,molecular markers and tissue engineering.Researchers are interested in using BGNs in bone,heart and skin regeneration.However,there is inadequate information on skeletal muscle tissue engineering,limited information on the biological effects of BGNs on myoblasts,and the role of bioactive glass composite materials on myogenic differentiation is unknown.Herein,we report the effects of BGNs with different compositions(60Si-BGN,80Si-BGN,100Si-BGN)on the myogenic differentiation in C2C12 cells and in vivo skeletal tissue regeneration.The results showed that 80Si-BGN could efficiently promote the myogenic differentiation of C1C12 cells,including the myotube formation and myogenic gene expression.The in vivo experiment in a rat skeletal muscle defect model also confirmed that 80Si-BGN could significantly improve the complete regeneration of skeletal muscle tissue during 4 weeks implantation.This work firstly demonstrated evidence that BGN could be the bioactive material in enhancing skeletal muscle regeneration.
文摘制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.