This paper focuses on the connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy.Accordingly,a unified error transformation is adopted to preserve the initial interaction ...This paper focuses on the connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy.Accordingly,a unified error transformation is adopted to preserve the initial interaction pattern determined by agents’limited communication ranges and initial states.Meanwhile,the so-called congelation of variables method is used to handle the unknown aperiodically time-varying parameters,which are fast-varying in an unknown compact set with only their radii known a priori.In addition,a series of continuously differentiable functions are incorporated into the Lyapunov function to design the controller.Based on Lyapunov stability theory,the proposed control algorithm guarantees that the consensus errors converge with a predefined accuracy,whereas most existing connectivity-preserving results can only ensure uniform ultimate boundedness.Simultaneously,all closed-loop signals remain bounded.Finally,two simulations are provided to validate the effectiveness of the proposed control protocol.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61673014)。
文摘This paper focuses on the connectivity-preserving consensus of nonlinear switched multi-agent systems with predefined accuracy.Accordingly,a unified error transformation is adopted to preserve the initial interaction pattern determined by agents’limited communication ranges and initial states.Meanwhile,the so-called congelation of variables method is used to handle the unknown aperiodically time-varying parameters,which are fast-varying in an unknown compact set with only their radii known a priori.In addition,a series of continuously differentiable functions are incorporated into the Lyapunov function to design the controller.Based on Lyapunov stability theory,the proposed control algorithm guarantees that the consensus errors converge with a predefined accuracy,whereas most existing connectivity-preserving results can only ensure uniform ultimate boundedness.Simultaneously,all closed-loop signals remain bounded.Finally,two simulations are provided to validate the effectiveness of the proposed control protocol.