According to the reciprocity principle, we propose an efficient model to compute the shielding effectiveness of a rectangular cavity with apertures covered by conductive sheet against an external incident electromagne...According to the reciprocity principle, we propose an efficient model to compute the shielding effectiveness of a rectangular cavity with apertures covered by conductive sheet against an external incident electromagnetic wave. This problem is converted into another problem of solving the electromagnetic field leakage from the cavity when the cavity is excited by an electric dipole placed within it. By the combination of the unperturbed cavity field and the transfer impedance of the sheet, the tangential electric field distribution on the outer surface of the sheet is obtained. Then, the field distribution is regarded as an equivalent surface magnetic current source responsible for the leakage field. The validation of this model is verified by a comparison with the circuital model and the full-wave simulations. This time-saving model can deal with arbitrary aperture shape, various wave propagation and polarization directions, and the near-field effect.展开更多
In this paper,the finite-difference time-domain(FDTD)algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays.In the case in which the long-side of the slot in apertu...In this paper,the finite-difference time-domain(FDTD)algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays.In the case in which the long-side of the slot in aperture arrays is perpendicular to the incident electrical field,and the electrical distribution of each center of slot in the aperture arrays in the process of microwave pulse coupling into the rectangular cavity with aperture arrays is analyzed in detail. We find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction parallel to the incident electrical field is minimum and increases in turn from the middle to both sides symmetrically. We also find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction perpendicular to the incident electrical field is maximum and decreases in turn from the middle to both sides symmetrically.In the same time,we investigate the factors that influence the effect of field enhancement of the center of each slot and the coupling electrical distribution in the cavity,including the number of slots and the spacing between slots.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51307055)in part by the State Grid Corporation of China(Grant No.No.SGRI-WD-71-12-009)
文摘According to the reciprocity principle, we propose an efficient model to compute the shielding effectiveness of a rectangular cavity with apertures covered by conductive sheet against an external incident electromagnetic wave. This problem is converted into another problem of solving the electromagnetic field leakage from the cavity when the cavity is excited by an electric dipole placed within it. By the combination of the unperturbed cavity field and the transfer impedance of the sheet, the tangential electric field distribution on the outer surface of the sheet is obtained. Then, the field distribution is regarded as an equivalent surface magnetic current source responsible for the leakage field. The validation of this model is verified by a comparison with the circuital model and the full-wave simulations. This time-saving model can deal with arbitrary aperture shape, various wave propagation and polarization directions, and the near-field effect.
文摘In this paper,the finite-difference time-domain(FDTD)algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays.In the case in which the long-side of the slot in aperture arrays is perpendicular to the incident electrical field,and the electrical distribution of each center of slot in the aperture arrays in the process of microwave pulse coupling into the rectangular cavity with aperture arrays is analyzed in detail. We find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction parallel to the incident electrical field is minimum and increases in turn from the middle to both sides symmetrically. We also find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction perpendicular to the incident electrical field is maximum and decreases in turn from the middle to both sides symmetrically.In the same time,we investigate the factors that influence the effect of field enhancement of the center of each slot and the coupling electrical distribution in the cavity,including the number of slots and the spacing between slots.