期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Controlled release of cisplatin and cancer cell apoptosis with cisplatin encapsulated poly(lactic-co-glycolic acid) nanoparticles 被引量:1
1
作者 A. Champa Jayasuriya Anthony J. Darr 《Journal of Biomedical Science and Engineering》 2013年第5期586-592,共7页
The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used ... The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) to prepare the NPs by adjusting the double emulsion technique using poly(vinylalcohol) as a surface active agent. The PLGA NPs were characterized for particle size and shape, controlled release of cisplatin, and degradation. Cisplatin solubility in deionized water was increased up to 4 mg/mL by simply changing the solution parameters. Cisplatin encapsulated NPs were incubated in phosphate buffered saline (PBS) at 37?C to study the release kinetics of cisplatin. Cisplatin was released in a sustained manner with less than 20% release during a 3-day period followed by 50% release during a 21-day period. A degradation study of PLGA NPs demonstrated the loss of spherical shape during a 21-day period. We also examined the cisplatin sensitive A2780 cell apoptosis when cells were incubated with cisplatin encapsulated PLGA NPs. A large number of cell apoptosis occurred as a result of cisplatin release from the PLGA NPs. These results suggest that cisplatin encapsulated PLGA NPs can be used to treat the cancer cells by injecting them into a localized site minimizing the side effects. 展开更多
关键词 NANOPARTICLES CISPLATIN Poly(Lactic-co-Glycolic Acid) CONTROLLED Release Cancer apopotosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部