Objective:To explore the protective effect and its molecular mechanism of apoptosis signalregulating kinase 1(ASK1) inhibitor(GS-459679) on acetaminophen-induced liver injury in mice.Methods:The model of liver injury ...Objective:To explore the protective effect and its molecular mechanism of apoptosis signalregulating kinase 1(ASK1) inhibitor(GS-459679) on acetaminophen-induced liver injury in mice.Methods:The model of liver injury was established by administration of acetaminophen(APAP)(300 mg/kg,i.p.) on C57BL/6 mice.Forty-eight male C57BL/6 mice were randomly divided into four groups,consisting of control group,GS group(GS-459679,30 mg/kg,i.p.),APAPinduced group,and GS combined with APAP-induced group.For GS combined with APAPinduced group,mice were treated with GS 30 min prior to administration of APAP.After mice were euthanized at 6 h or 12 h.respectively,serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were analyzed,and mRNA levels of TNF- α,IL-6 and IL-1βwere tested.The activity of glutathione(GSH),oxidized GSH(GSSG) and malondialdehyde were quantified.In addition,ASK1,P-ASK1,JNK and P-JNK protein levels were tested in all groups.Results:The ASK1 and P-ASK1 levels were up-regulated in APAP-induced group.Compared to the control group,serum levels of ALT and AST.and mRNA levels of TNF- a,IL-6 and IL-1(3were increased in APAP-induced group.Meanwhile,the levels of MAD and GSSG.and the ratio of GSSG/GSH were higher and the JNK was activatedin APAP-induced group compared with that in control group.However,compared to APAP-induced group,GS combined with APAP-induced group displayed a decrease of protein expression levels of ASK 1,P-ASKI and P-JNK,a reduction of serum levels of ALT and AST,a decrease in TNF- a.IL-6 and IL-1(3 mRNA levels,and a low ration of GSSG/GSH.Conclusions:GS-459679 treatment effectively down-regulates ASK1 and P-ASK 1 expression.Addition of GS-459679 decreases the generation of liver metabolites and inflammatory factors,reduces oxidative stress reaction,inhibits JNK activation,and then protects the responsiveness to APAP-induced liver injury.展开更多
Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-reg...Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.展开更多
Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC...Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.展开更多
AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to in...AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinomaderived cell line Hep G2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RTPCR. Apoptotic index and cell viability of L02 cells and Hep G2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and Hep G2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein(CHOP), glucose-regulated protein(GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and m RNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phosphoeukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A(PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78.CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathwaydependent induction of GRP78 expression.展开更多
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, inc...The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.展开更多
Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone ...Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone (10, 20, and 40 pmol/L, respectively) and c-Jun N-terminal kinase (JNK) inhibitor SP600125 (10, 20, and 40 mu mol/L. respectively). Then cellular proliferative activity and the expression of JNK/c-Jun pathway molecule and apoptotic molecule in the cells were detected. Results: After 6, 12. 18 and 24 h of treatment, the value for proliferative activity of cells treated with juglone was significantly lower than that of control group (p<0.05), and the anti-proliferative effect was more significant as the treatment period and juglone dosage increased (P<0.05). The protein expressions of Box, CytC, Fas, FasL, Caspase-3, and p-c-Jun in cells treated with juglone were significantly higher than those of control group (P<0.05), and the protein expressions of Bax, CytC, Fas. FasL, Caspase-3, p-JNK and p-c-Jun increased more remarkably as the juglone dosage increased (P<0.05). In cells treated with 40 pmol/L juglone and SP600125, the protein expressions of Bax, CytC, Fas. Fast.. and Caspase-3 were significantly lower than those of cells treated with 40 pmol/L juglone (J<0.05), and the protein expressions of Bax, CytC, Fas, FasL and Caspase-3 reduced more remarkably as the SP600125 dosage increased (P<0.05). Conclusion: Juglone can increase the expression of apoptotic molecules in mitochondrial pathway and death receptor pathway by activating JNK/c-Jun pathway, thus inducing apoptosis of cervical cancer cells.展开更多
BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(...BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.展开更多
Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U012...Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the UO126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.展开更多
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest...AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.展开更多
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role...Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.展开更多
BACKGROUND Hepatocellular carcinoma(HCC),often diagnosed at advanced stages without curative therapies,is the fifth most common malignant cancer and the second leading cause of cancer-related mortality.Polo-like kinas...BACKGROUND Hepatocellular carcinoma(HCC),often diagnosed at advanced stages without curative therapies,is the fifth most common malignant cancer and the second leading cause of cancer-related mortality.Polo-like kinase 1(PLK1)is activated in the late G2 phase of the cell cycle and is required for entry to mitosis.Interestingly,PLK1 is overexpressed in many HCC patients and is highly associated with poor clinical outcome.Baculoviral inhibitor of apoptosis repeatcontaining 5(BIRC5)is also highly overexpressed in HCC and plays key roles in this malignancy.AIM To determine the expression patterns of PLK1 and BIRC5,as well as their correlation with p53 mutation status and patient clinical outcome.METHODS The expression patterns of PLK1 and BIRC5,and their correlation with p53 mutation status or patient clinical outcome were analyzed using a TCGA HCC dataset.Cell viability,cell apoptosis,and cell cycle arrest assays were conducted to investigate the efficacy of the PLK1 inhibitors volasertib and GSK461364 and the BIRC5 inhibitor YM155,alone or in combination.The in vivo efficacy of volasertib and YM155,alone or in combination,was assessed in p53-mutated Huh7-derived xenograft models in immune-deficient NSIG mice.RESULTS Our bioinformatics analysis using a TCGA HCC dataset revealed that PLK1 and BIRC5 were overexpressed in the same patient subset and their expression was highly correlated.The overexpression of both PLK1 and BIRC5 was more frequently detected in HCC with p53 mutations.High PLK1 or BIRC5 expression significantly correlated with poor clinical outcome.PLK1 inhibitors(volasertib and GSK461364)or a BIRC5 inhibitor(YM155)selectively targeted Huh7 cells with mutated p53,but not HepG2 cells with wild-type p53.The combination treatment of volasertib and YM155 synergistically inhibited the viability of Huh7 cells via apoptotic pathway.The efficacy of volasertib and YM155,alone or in combination,was validated in vivo in a Huh7-derived xenograft model.CONCLUSION PLK1 and BIRC5 are highly co-expressed in p53-mutated HCC and inhibition of both PLK1 and BIRC5 synergistically compromises the viability of p53-mutated HCC cells in vitro and in vivo.展开更多
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible ...Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.展开更多
BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigeni...BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigenin suppressed pulmonary fibrosis induced by PQ.We wondered whether arctigenin could also have a protective eff ect on PQ-induced ALI.METHODS:A PQ-induced A549 cell injury model was used,and the effect of arctigenin was determined by a cell counting kit-8(CCK-8)cell viability assay.In addition,terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labelling(TUNEL)staining assays and mitochondrial membrane potential assays were performed to evaluate the level of cell apoptosis.The generation of reactive oxygen species(ROS)was refl ected by dihydroethidium(DHE)staining and a 2’,7’-dichlorodihy drofluorescein diacetate(DCFH-DA)assay.Moreover,immunoblotting studies were used to assess the expression of mitogen-activated protein kinases(MAPKs)and p38 MAPK.RESULTS:Arctigenin attenuated PQ-induced inhibition of A549 cell viability in a dose-dependent manner.Arctigenin also significantly reduced PQ-induced A549 cell apoptosis,as refl ected by the TUNEL assay and mitochondrial membrane potential assay,which may result from suppressed ROS/p38 MAPK signaling because we found that arctigenin dramatically suppressed ROS generation and p38 MAPK phosphorylation.CONCLUSION:Arctigenin could attenuate PQ-induced lung epithelial A549 cell injury in vitro by suppressing ROS/p38 MAPK-mediated cell apoptosis,and arctigenin might be considered a potential candidate drug for PQ-induced ALI.展开更多
AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultur...AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultures were pretreated with 100 IJmol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays. JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by EIIman's method and reactive oxygen species (ROS) generation by cell cytometry. RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decrease in ethanol-induced apoptosis (P〈 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity, and prevented cytochrome c release and pro-caspase 3 cleavage.CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.展开更多
Interleukin-4 (IL-4) promotes lymphocyte survival and protects primary lymphomas from apoptosls. Previous studies reported differential requirements for the signal transducer and activator of transcription 6 (STAT6...Interleukin-4 (IL-4) promotes lymphocyte survival and protects primary lymphomas from apoptosls. Previous studies reported differential requirements for the signal transducer and activator of transcription 6 (STAT6) and IRS2/phosphati-dylinositol 3 kinase (PI-3K) signaling pathways in mediating the IL-4-induced protection from Fas-mediated apoptosis. In this study, we characterized IL-4-activated signals that suppress anti-IgM-mediated apoptosis and growth arrest of CH31, a model B-cell lymphoma line. In CH31, anti-IgM treatment leads to the loss of mitochondrial membrane poten-tial, phospho-Akt, phospho-CDK2, and c-myc protein. These losses are followed by massive induction of p27^Kip1 protein expression, cell cycle arrest, and apoptosis. Strikingly, IL-4 treatment prevented or reversed these changes. Furthermore, IL-4 suppressed the activation of caspases 9 and 3, and, in contrast to previous reports, induced the phosphorylation (de-activation) of BAD. IL-4 treatment also induced expression of BclxL, a STAT6-dependent gene. Pharmacologic inhibitors and dominant inhibitory forms of PI-3K and Akt abrogated the anti-apoptotic function of IL-4. These results suggest that the IL-4 receptor activates several signaling pathways, with the Akt pathway playing a major role in suppression of the apoptotic program activated by anti-IgM.展开更多
Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at d...Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry, p38 activities were detected by Western blotting. Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells. Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.展开更多
AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermo...AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.展开更多
The effects of a novel immunosuppressive agent FTY720 on proliferation inhibition and apoptosis of acute leukemia cell lines HL 60 and U937, and the role of extracelluar regulated protein kinase (ERK) in the course o...The effects of a novel immunosuppressive agent FTY720 on proliferation inhibition and apoptosis of acute leukemia cell lines HL 60 and U937, and the role of extracelluar regulated protein kinase (ERK) in the course of proliferation inhibition and apoptosis induced by FTY720 were studied. The proliferation inhibition rate of HL 60 and U937 cells by various concentrations of FTY720 was detected by MTT assay. Cell apoptosis was detected by DNA fragment analysis and flow cytometry. The phosphorylated ERK1/2 protein expression was observed by Western blotting. The change of intracellular distribution of ERK1/2 protein was identified by SP immunohistochemical staining. The results showed that FTY720 could inhibit the growth of HL 60 and U937 cells effectively in a dose dependent manner. After incubation with FTY720 for 24 h, apoptosis was observed in HL 60 and U937 cells. The intracellular expression of phosphorylated ERK1/2 protein was also down regulated and the distribution of ERK1/2 protein in cell nuclear was reduced during FTY720 induced apoptosis. So, that FTY720 inhibited ERK1/2 phosphorylation might mediate the role of FTY720 induced apoptosis and proliferation inhibition of leukemia cells.展开更多
In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibit...In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibition and apoptosis,three chemotherapeutic drugs Harringtonine(HRT) , Vincristine(VCR) and Etoposide(Vp16 ) were selected as inducers.The proliferation inhibition rate was detected by MTT m ethod,the cell cycle and cell apoptosis was analyzed by flow cytometry and the telom erase activity was detected by the telom eric repeat am plification protocol(TRAP) assay and bioluminescence analysis method.The phosphorylated ERK 1/ 2 protein expression was detected by western blot method.The results showed that HRT,VCR and Vp16 could inhibit cell proliferation,induce apoptosis,inhibit telomerase activity and down- regulate the protein expres- sion of phosphorylated ERK.Itwas suggested that ERK signal transduction pathway was involved in the down- regulation of telomerase activity and the onset of apoptosis in the leukem ic cells treat- ed by HRT,VCR and Vp16 .展开更多
To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was ind...To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.展开更多
基金supported by Soft Science Foundation of Yongchuan District of Chongqing City(Grant No.YCSTC.2011BE5015)
文摘Objective:To explore the protective effect and its molecular mechanism of apoptosis signalregulating kinase 1(ASK1) inhibitor(GS-459679) on acetaminophen-induced liver injury in mice.Methods:The model of liver injury was established by administration of acetaminophen(APAP)(300 mg/kg,i.p.) on C57BL/6 mice.Forty-eight male C57BL/6 mice were randomly divided into four groups,consisting of control group,GS group(GS-459679,30 mg/kg,i.p.),APAPinduced group,and GS combined with APAP-induced group.For GS combined with APAPinduced group,mice were treated with GS 30 min prior to administration of APAP.After mice were euthanized at 6 h or 12 h.respectively,serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were analyzed,and mRNA levels of TNF- α,IL-6 and IL-1βwere tested.The activity of glutathione(GSH),oxidized GSH(GSSG) and malondialdehyde were quantified.In addition,ASK1,P-ASK1,JNK and P-JNK protein levels were tested in all groups.Results:The ASK1 and P-ASK1 levels were up-regulated in APAP-induced group.Compared to the control group,serum levels of ALT and AST.and mRNA levels of TNF- a,IL-6 and IL-1(3were increased in APAP-induced group.Meanwhile,the levels of MAD and GSSG.and the ratio of GSSG/GSH were higher and the JNK was activatedin APAP-induced group compared with that in control group.However,compared to APAP-induced group,GS combined with APAP-induced group displayed a decrease of protein expression levels of ASK 1,P-ASKI and P-JNK,a reduction of serum levels of ALT and AST,a decrease in TNF- a.IL-6 and IL-1(3 mRNA levels,and a low ration of GSSG/GSH.Conclusions:GS-459679 treatment effectively down-regulates ASK1 and P-ASK 1 expression.Addition of GS-459679 decreases the generation of liver metabolites and inflammatory factors,reduces oxidative stress reaction,inhibits JNK activation,and then protects the responsiveness to APAP-induced liver injury.
基金Shanghai Medical Key Discipline Construction Foundation(05-Ⅲ-005-017).
文摘Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.
基金National Natural Science Foundation of China(No.81860709)Baise City Science and Technology Plan Project(No.Encyclopedia 20224139,Encyclopedia 20211807)2023 Youjiang Ethnic Medical College Graduate Innovation Program Project(No.YXCXJH2023013)。
文摘Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.
基金Supported by the National Natural Science Foundation of China,No.81160067 and No.814600124
文摘AIM To investigate the protective effect of prostaglandin E1(PGE1) against endoplasmic reticulum(ER) stressinduced hepatocyte apoptosis, and to explore its underlying mechanisms.METHODS Thapsigargin(TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinomaderived cell line Hep G2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RTPCR. Apoptotic index and cell viability of L02 cells and Hep G2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and Hep G2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein(CHOP), glucose-regulated protein(GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and m RNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phosphoeukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A(PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78.CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathwaydependent induction of GRP78 expression.
基金supported by the National Natural Science Foundation of ChinaNo.81271387+3 种基金the Research Special Fund of Public Welfare and Health Department of ChinaNo.201402009the National Key Technology R&D Program in ChinaNo.Z141107002514031
文摘The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.
基金supported by the Hainan Health Department(2002lx-12)
文摘Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone (10, 20, and 40 pmol/L, respectively) and c-Jun N-terminal kinase (JNK) inhibitor SP600125 (10, 20, and 40 mu mol/L. respectively). Then cellular proliferative activity and the expression of JNK/c-Jun pathway molecule and apoptotic molecule in the cells were detected. Results: After 6, 12. 18 and 24 h of treatment, the value for proliferative activity of cells treated with juglone was significantly lower than that of control group (p<0.05), and the anti-proliferative effect was more significant as the treatment period and juglone dosage increased (P<0.05). The protein expressions of Box, CytC, Fas, FasL, Caspase-3, and p-c-Jun in cells treated with juglone were significantly higher than those of control group (P<0.05), and the protein expressions of Bax, CytC, Fas. FasL, Caspase-3, p-JNK and p-c-Jun increased more remarkably as the juglone dosage increased (P<0.05). In cells treated with 40 pmol/L juglone and SP600125, the protein expressions of Bax, CytC, Fas. Fast.. and Caspase-3 were significantly lower than those of cells treated with 40 pmol/L juglone (J<0.05), and the protein expressions of Bax, CytC, Fas, FasL and Caspase-3 reduced more remarkably as the SP600125 dosage increased (P<0.05). Conclusion: Juglone can increase the expression of apoptotic molecules in mitochondrial pathway and death receptor pathway by activating JNK/c-Jun pathway, thus inducing apoptosis of cervical cancer cells.
基金Supported by the National Natural Science Foundation of China,No.81273952
文摘BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.
基金supported by National Natural Science Foundation of China(81272180)National Basic Research Program of China(2012CB518200)
文摘Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the UO126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.
基金Supported by the National Basic Science and Development Programme (973 Programme),No.G1999054204 National Natural Science Foundation of China, No. 30170966, 30230370 National High-Technology Programme (863 Programme), No. 2001AA215131
文摘AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.
基金Major State BasicResearch (973) Program of China, (G1999053905).
文摘Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.
基金Supported by National Science and Technology Major Project,No.2018ZX10732-202-004Tianjin Science and Technology Plan Project,No.17JCYBJC26100 and No.19ZXDBSY00030.
文摘BACKGROUND Hepatocellular carcinoma(HCC),often diagnosed at advanced stages without curative therapies,is the fifth most common malignant cancer and the second leading cause of cancer-related mortality.Polo-like kinase 1(PLK1)is activated in the late G2 phase of the cell cycle and is required for entry to mitosis.Interestingly,PLK1 is overexpressed in many HCC patients and is highly associated with poor clinical outcome.Baculoviral inhibitor of apoptosis repeatcontaining 5(BIRC5)is also highly overexpressed in HCC and plays key roles in this malignancy.AIM To determine the expression patterns of PLK1 and BIRC5,as well as their correlation with p53 mutation status and patient clinical outcome.METHODS The expression patterns of PLK1 and BIRC5,and their correlation with p53 mutation status or patient clinical outcome were analyzed using a TCGA HCC dataset.Cell viability,cell apoptosis,and cell cycle arrest assays were conducted to investigate the efficacy of the PLK1 inhibitors volasertib and GSK461364 and the BIRC5 inhibitor YM155,alone or in combination.The in vivo efficacy of volasertib and YM155,alone or in combination,was assessed in p53-mutated Huh7-derived xenograft models in immune-deficient NSIG mice.RESULTS Our bioinformatics analysis using a TCGA HCC dataset revealed that PLK1 and BIRC5 were overexpressed in the same patient subset and their expression was highly correlated.The overexpression of both PLK1 and BIRC5 was more frequently detected in HCC with p53 mutations.High PLK1 or BIRC5 expression significantly correlated with poor clinical outcome.PLK1 inhibitors(volasertib and GSK461364)or a BIRC5 inhibitor(YM155)selectively targeted Huh7 cells with mutated p53,but not HepG2 cells with wild-type p53.The combination treatment of volasertib and YM155 synergistically inhibited the viability of Huh7 cells via apoptotic pathway.The efficacy of volasertib and YM155,alone or in combination,was validated in vivo in a Huh7-derived xenograft model.CONCLUSION PLK1 and BIRC5 are highly co-expressed in p53-mutated HCC and inhibition of both PLK1 and BIRC5 synergistically compromises the viability of p53-mutated HCC cells in vitro and in vivo.
基金supported by a grant from the National Natural Sciences Foundation of China,No.81030019
文摘Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis- mutase 1 mutant (SOD1G93A) and wild-type (SOD1wv) mouse models were exposed to H202. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenos- ine monophosphate-activated protein kinase (AMPK) ct-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1wr cells, SOD1~93A embryonic neural stem cells were more likely to undergo H202-induced apoptosis. Phosphorylation of AMPKct in SOD1G93A cells was higher than that in SOD1wr cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKct. p53 protein levels were also correlated with AMPKct phosphorylation levels. Compound C, an inhibitor of AMPKa, attenuated the effects of H20~. These results suggest that embryonic neural stem cells from SOD1C93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKa pathway.
基金This work was supported by the National Natural Science Foundation of China(82172182 and 82102311)Social Development Projects of Jiangsu Province(BE2017720)+2 种基金Natural Science Foundation of Jiangsu Province(BK20190247)Science Foundation of Jiangsu Health Commission(H2018039)Jiangsu Postdoctoral Research Foundation(2018K048A and 2020Z193).
文摘BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigenin suppressed pulmonary fibrosis induced by PQ.We wondered whether arctigenin could also have a protective eff ect on PQ-induced ALI.METHODS:A PQ-induced A549 cell injury model was used,and the effect of arctigenin was determined by a cell counting kit-8(CCK-8)cell viability assay.In addition,terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labelling(TUNEL)staining assays and mitochondrial membrane potential assays were performed to evaluate the level of cell apoptosis.The generation of reactive oxygen species(ROS)was refl ected by dihydroethidium(DHE)staining and a 2’,7’-dichlorodihy drofluorescein diacetate(DCFH-DA)assay.Moreover,immunoblotting studies were used to assess the expression of mitogen-activated protein kinases(MAPKs)and p38 MAPK.RESULTS:Arctigenin attenuated PQ-induced inhibition of A549 cell viability in a dose-dependent manner.Arctigenin also significantly reduced PQ-induced A549 cell apoptosis,as refl ected by the TUNEL assay and mitochondrial membrane potential assay,which may result from suppressed ROS/p38 MAPK signaling because we found that arctigenin dramatically suppressed ROS generation and p38 MAPK phosphorylation.CONCLUSION:Arctigenin could attenuate PQ-induced lung epithelial A549 cell injury in vitro by suppressing ROS/p38 MAPK-mediated cell apoptosis,and arctigenin might be considered a potential candidate drug for PQ-induced ALI.
文摘AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultures were pretreated with 100 IJmol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays. JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by EIIman's method and reactive oxygen species (ROS) generation by cell cytometry. RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decrease in ethanol-induced apoptosis (P〈 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity, and prevented cytochrome c release and pro-caspase 3 cleavage.CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.
文摘Interleukin-4 (IL-4) promotes lymphocyte survival and protects primary lymphomas from apoptosls. Previous studies reported differential requirements for the signal transducer and activator of transcription 6 (STAT6) and IRS2/phosphati-dylinositol 3 kinase (PI-3K) signaling pathways in mediating the IL-4-induced protection from Fas-mediated apoptosis. In this study, we characterized IL-4-activated signals that suppress anti-IgM-mediated apoptosis and growth arrest of CH31, a model B-cell lymphoma line. In CH31, anti-IgM treatment leads to the loss of mitochondrial membrane poten-tial, phospho-Akt, phospho-CDK2, and c-myc protein. These losses are followed by massive induction of p27^Kip1 protein expression, cell cycle arrest, and apoptosis. Strikingly, IL-4 treatment prevented or reversed these changes. Furthermore, IL-4 suppressed the activation of caspases 9 and 3, and, in contrast to previous reports, induced the phosphorylation (de-activation) of BAD. IL-4 treatment also induced expression of BclxL, a STAT6-dependent gene. Pharmacologic inhibitors and dominant inhibitory forms of PI-3K and Akt abrogated the anti-apoptotic function of IL-4. These results suggest that the IL-4 receptor activates several signaling pathways, with the Akt pathway playing a major role in suppression of the apoptotic program activated by anti-IgM.
文摘Objective To investigate whether the effect of E. coli on U937 cell fines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation. Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry, p38 activities were detected by Western blotting. Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells. Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.
基金Supported by A grant from the National Eleventh Five-Year Technology Support Project of China,No. 2008 BAI68B01
文摘AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.
文摘The effects of a novel immunosuppressive agent FTY720 on proliferation inhibition and apoptosis of acute leukemia cell lines HL 60 and U937, and the role of extracelluar regulated protein kinase (ERK) in the course of proliferation inhibition and apoptosis induced by FTY720 were studied. The proliferation inhibition rate of HL 60 and U937 cells by various concentrations of FTY720 was detected by MTT assay. Cell apoptosis was detected by DNA fragment analysis and flow cytometry. The phosphorylated ERK1/2 protein expression was observed by Western blotting. The change of intracellular distribution of ERK1/2 protein was identified by SP immunohistochemical staining. The results showed that FTY720 could inhibit the growth of HL 60 and U937 cells effectively in a dose dependent manner. After incubation with FTY720 for 24 h, apoptosis was observed in HL 60 and U937 cells. The intracellular expression of phosphorylated ERK1/2 protein was also down regulated and the distribution of ERK1/2 protein in cell nuclear was reduced during FTY720 induced apoptosis. So, that FTY720 inhibited ERK1/2 phosphorylation might mediate the role of FTY720 induced apoptosis and proliferation inhibition of leukemia cells.
文摘In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibition and apoptosis,three chemotherapeutic drugs Harringtonine(HRT) , Vincristine(VCR) and Etoposide(Vp16 ) were selected as inducers.The proliferation inhibition rate was detected by MTT m ethod,the cell cycle and cell apoptosis was analyzed by flow cytometry and the telom erase activity was detected by the telom eric repeat am plification protocol(TRAP) assay and bioluminescence analysis method.The phosphorylated ERK 1/ 2 protein expression was detected by western blot method.The results showed that HRT,VCR and Vp16 could inhibit cell proliferation,induce apoptosis,inhibit telomerase activity and down- regulate the protein expres- sion of phosphorylated ERK.Itwas suggested that ERK signal transduction pathway was involved in the down- regulation of telomerase activity and the onset of apoptosis in the leukem ic cells treat- ed by HRT,VCR and Vp16 .
基金This project was supported by a grant from National Natural Sciences Foundation of China (No 30672262)
文摘To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.