期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revealing the potential of apparent critical current density of Li/garnet interface with capacity perturbation strategy
1
作者 Zhihao Guo Xinhai Li +6 位作者 Zhixing Wang Huajun Guo Wenjie Peng Guangchao Li Guochun Yan Qihou Li Jiexi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期56-63,共8页
Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the p... Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the possible maximum apparent current density that a given ASSLSC system can endure and how to reveal this potential still require study.Herein,a capacity perturbation strategy aiming to better measure the possible maximum j_(Ac)^(a)is proposed for the first time.With garnet-based plane-surface structure ASSLSCs as an exemplification,the j_(Ac)^(a)is quite small when the capacity is dramatically large.Under a perturbed capacity of 0.001 mA h cm^(-2),the j_(Ac)^(a)is determined to be as high as 2.35 mA cm^(-2)at room temperature.This investigation demonstrates that the capacity perturbation strategy is a feasible strategy for measuring the possible maximum j_(Ac)^(a)of Li/solid electrolyte interface,and hopefully provides good references to explore the critical current density of other types of electrochemical systems. 展开更多
关键词 All-solid-state lithium batteries Li/solid electrolyte interface apparent critical current density Interfacial state variation Capacity perturbation strategy
下载PDF
Characterization of nanoparticle mixed 316L powder for additive manufacturing
2
作者 Wengang Zhai Wei Zhou +1 位作者 Sharon Mui Ling Nai Jun Wei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期162-168,共7页
Nanoparticles reinforced steels have many advantaged mechanical properties.Additive manufacturing offers a new method for fabricating nanoparticles reinforced high performance metal components.In this work,we report t... Nanoparticles reinforced steels have many advantaged mechanical properties.Additive manufacturing offers a new method for fabricating nanoparticles reinforced high performance metal components.In this work,we report the application of low energy ball milling in mixing nanoparticles and micron 316 L powder.With this method,0.3 and 1.0 wt% Y2 O3 nanoparticles can be uniformly distributed on the surface of 316 L powder with the parameters of ball-to-powder ratio at 1:1,speed at 90 rpm and 7 h of mixing.The matrix 316 L powders remain spherical in shape after the mixing process.In the meantime,the effect of low energy ball milling and the addition of Y2 O3 nanoparticles on the powder characteristics(flowability,apparent density and tap density) are also studied.Results show that the process of low energy ball milling itself can slightly decrease the flowability and apparent density of the 316 L powder.The addition of 0.3 and 1.0 wt% Y2 O3 nanoparticles can also decrease the flowability,the tap density and the apparent density compared with the original 316 L powder.All of these changes result from the rough surface of the mixed powder produced by ball milling and the addition of Y2 O3 nanoparticles.The powder’s rough surface can increase the coefficient of friction of powders.The mixture of 316 L powder and Y2 O3 nanoparticles can be successfully used for selective laser melting(SLM).The relative density of SLM 316 L-Y2 O3 is measured at 99.5%.However,Y2 O3 agglomerations were observed which is due to the poor wettability between 316 L and Y2 O3. 展开更多
关键词 Powder mixing Powder characterization FLOWABILITY apparent density Tap density Additive manufacturing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部