The potential role of personal items in the transmission of pathogens is poorly understood. In this study, we cultured bacteria of public health importance found on wristbands, determined whether there is a correlatio...The potential role of personal items in the transmission of pathogens is poorly understood. In this study, we cultured bacteria of public health importance found on wristbands, determined whether there is a correlation between wristband material and prevalence, and tested three household disinfectants for efficacy in reducing bacteria on wristbands made of plastic, rubber, metal, and cloth, using standard microbiological assays. Total cultivable bacteria, Staphylococci, Enterobacteria (Escherichia coli), and Pseudomonas on 20 smartwatch wristbands were cultured from randomly recruited subjects. Nearly all wristbands (95%) were contaminated, with the highest average numbers of 3.46E+4 cfu/cm<sup>2</sup> and 1.52E+4 cfu/cm<sup>2</sup> on rubber and plastic bands respectively. Metallic gold and silver wristbands had zero to 18 cfu/cm<sup>2</sup>. While the high prevalence of Staphylococcus spp (85% of wristbands)—skin microbiota;was not unexpected, the occurrence of Pseudomonas spp (30%), and enteric bacteria (60%), even at relatively low numbers is of public health significance. Bacterial load on individual subjects varied remarkably with males and females harboring average total bacteria of 4.045 and 3.42 log<sub>10</sub>cfu/cm<sup>2</sup> of wristband, respectively. The most important predictor of wristband bacteria load was the texture of wristband material and activity (hygiene) of the subject at sampling time. Potential pathogens—Staphylococcus aureus (8143 cfu/cm<sup>2</sup>) and Pseudomonas spp. (1126 cfu/cm<sup>2</sup>) were most abundant on cloth and rubber wristbands, respectively, while the presence of the E. coli group was associated with animal handling activity by a veterinarian. Lysol Disinfectant Spray and 70% Ethanol were highly effective regardless of wristband material with >99.99% kill rate and a log cfu/cm<sup>2</sup> reduction of 3 - 4.0 and 3 - 4.5 respectively within 30 seconds. Apple Cider Vinegar (ACV) was not as potent. Only 2 - 3.5 log cfu/cm<sup>2</sup> drop was obtained after 120 seconds of exposure. Further susceptibility assays with standard reference bacteria showed that Lysol and 70% alcohol effectively killed > 99.99% (>8 log CFU drop) of Escherichia coli strain 7001, Staphylococcus aureus strain 6538, and Pseudomonas aeruginosa strain 10662 within 30 seconds of contact. Vinegar had a similar efficacy on the gram negatives but little or no effect on Staph aureus (only a 2-log CFU/ml reduction in 5 minutes!) The high prevalence of potential pathogens, some of which could be reservoirs of antibiotic resistance reveals a weak link in infection control and underscores the need for regular cleaning of personal and hand-held accessories with adequate considerations of their texture.展开更多
文摘The potential role of personal items in the transmission of pathogens is poorly understood. In this study, we cultured bacteria of public health importance found on wristbands, determined whether there is a correlation between wristband material and prevalence, and tested three household disinfectants for efficacy in reducing bacteria on wristbands made of plastic, rubber, metal, and cloth, using standard microbiological assays. Total cultivable bacteria, Staphylococci, Enterobacteria (Escherichia coli), and Pseudomonas on 20 smartwatch wristbands were cultured from randomly recruited subjects. Nearly all wristbands (95%) were contaminated, with the highest average numbers of 3.46E+4 cfu/cm<sup>2</sup> and 1.52E+4 cfu/cm<sup>2</sup> on rubber and plastic bands respectively. Metallic gold and silver wristbands had zero to 18 cfu/cm<sup>2</sup>. While the high prevalence of Staphylococcus spp (85% of wristbands)—skin microbiota;was not unexpected, the occurrence of Pseudomonas spp (30%), and enteric bacteria (60%), even at relatively low numbers is of public health significance. Bacterial load on individual subjects varied remarkably with males and females harboring average total bacteria of 4.045 and 3.42 log<sub>10</sub>cfu/cm<sup>2</sup> of wristband, respectively. The most important predictor of wristband bacteria load was the texture of wristband material and activity (hygiene) of the subject at sampling time. Potential pathogens—Staphylococcus aureus (8143 cfu/cm<sup>2</sup>) and Pseudomonas spp. (1126 cfu/cm<sup>2</sup>) were most abundant on cloth and rubber wristbands, respectively, while the presence of the E. coli group was associated with animal handling activity by a veterinarian. Lysol Disinfectant Spray and 70% Ethanol were highly effective regardless of wristband material with >99.99% kill rate and a log cfu/cm<sup>2</sup> reduction of 3 - 4.0 and 3 - 4.5 respectively within 30 seconds. Apple Cider Vinegar (ACV) was not as potent. Only 2 - 3.5 log cfu/cm<sup>2</sup> drop was obtained after 120 seconds of exposure. Further susceptibility assays with standard reference bacteria showed that Lysol and 70% alcohol effectively killed > 99.99% (>8 log CFU drop) of Escherichia coli strain 7001, Staphylococcus aureus strain 6538, and Pseudomonas aeruginosa strain 10662 within 30 seconds of contact. Vinegar had a similar efficacy on the gram negatives but little or no effect on Staph aureus (only a 2-log CFU/ml reduction in 5 minutes!) The high prevalence of potential pathogens, some of which could be reservoirs of antibiotic resistance reveals a weak link in infection control and underscores the need for regular cleaning of personal and hand-held accessories with adequate considerations of their texture.