' Ji2055A' is a superior sterile line sorghum bred by Institute of Crop Resources, Jilin Academy of Agricultural Sciences. It has a growing season of 112 days and a plant height of 70 cm. With a stable sterility rat...' Ji2055A' is a superior sterile line sorghum bred by Institute of Crop Resources, Jilin Academy of Agricultural Sciences. It has a growing season of 112 days and a plant height of 70 cm. With a stable sterility rate of 100%, ' Ji2055A' has a stable male sterility and highly viable stignms. Selfing won't lead to seeds, This sterile line is strongly resistant to drought and lodging in addition to resistance to leaf spot and head smut. Generally, it has a yield of 3 000 -4 000 kg/hm2 and the hybrid seed yield is between 4 000 - 5 000 kg/hm2, with a high combining ability. There are six varieties approved by the state and the province, as well as another eight new combines under regional testing. The obtained hybrids are strongly resistant, widely adaptable with a great potential to increase yield, ' Ji2055A' has promoted the breeding and production of spring early maturing sorghum in China.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
The main objective of this work is to study the effect of sulphur application and irrigation water quantity on some soil properties of the calcareous soils and to limit the suitable concentration to obtain satisfactor...The main objective of this work is to study the effect of sulphur application and irrigation water quantity on some soil properties of the calcareous soils and to limit the suitable concentration to obtain satisfactory yield of faba beab under saline conditions. The study area (Tamyia district, Fayoum Governorate, Egypt) is characterized by a hot and dry climate in general with annual rainfall average of 8 mm/year, whereas the evaporation rates average ranging between 3.5 to10 mm/day. Faba bean (Vicia faba L.) was sown at 18 November 2010 and harvested at 26 April 2011. Total water consumed during faba bean growing season were 623.7 and747.2 m3/ fed for 100% and 120% irrigation treatments with increasing ranged between 3.5% and 3.7% in same sequence. Results showed that values of soil EC, pH and CaCO3 was improved as a result of both irrigation and S treatments. The improvement resulted in a gradual reduction of the studied soil properties by about 10.3%, 3.2%;17.0% and 23.1%, 4.3%;11.3% comparing S treated plot relative to the control plot at 100 and 120% irrigation treatments. Application S improved water content under studied soil constant and these increases were 8.8%, 11.8%, 8.3% and 16.9% for SP, FC, WP and AW, respectively relative to the control plots. Irrigation 100% had a positive effect on the drainable pores% which increased by about 7.0% comparing with 120% irrigation treatments. While hydraulic conductivity increased by about 16.4% and percentage of increase drainable pores was 14.0% and 21.4% for 100% and 120% irrigation treatments comparing 3rd layer with the 1st one, respectively. Increasing irrigation water from 100% to 120% resulted increasing in the studied macronutrients, N, P and K, by about 80.8%, 144.9% and 72.9%, respectively;while they increased in plant by about 118.8%, 132.8% and 62.2% as compared with the control one, respectively as a result of S application. Results showed that Na, Cl and Na/K ratio that increasing irrigation water caused increase by 2.02%, 11.11% for Na and Cl, while reduction in the ratio between Na and K was observed with value –15.7% as compared 120 with 100% irrigation treatments. S application cause slightly increases in Na content (3.55%) and moderately increases with Cl (34.38%), which led to decrease Na:K ratio by about 39.4%. Increasing irrigation water by 20%resulted in a gradual increase of both yield and water use efficiency (WUE) of faba bean plants compared with the control plants. Irrigation treatments significantly decreased the contents of proline in dry weight seed of faba bean gradually as a result of increase irrigation quantity (from 100% to 120%) and the reduction was 9.7%. While S addition decreased proline by about 15.9%. According to the interaction effect between irrigation and S application treatments, S improved proline content by about 20.4% and 11.2% relative to the control treatments under 100% and 120% irrigation treatments, respectively %.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ...This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.展开更多
Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMI...Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMILE)enhancement.SMILE is a safe,minimally invasive corneal laser surgery using a femtosecond laser to create an extractable stromal lenticule.展开更多
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go...This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.展开更多
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma...This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.展开更多
Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with ...Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with reflux esophagitis admitted to our hospital from May 2022 to May 2023 were randomly grouped into a control group and a research group, with 42 cases each. The control group was given conventional nursing care and the research group was given refined nursing care. The psychological state and treatment adherence of the two groups of patients after the nursing intervention were compared. Results: After the nursing intervention, the self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of the research group were lower than those of the control group (P < 0.05). The treatment compliance of the research group was better than the control group (P < 0.05). Conclusion: The implementation of refined nursing care for elderly patients with reflux esophagitis exhibited a significant effect on improving the patient’s psychological state, treatment compliance, and rehabilitation.展开更多
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri...Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.展开更多
Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulat...Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.展开更多
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep...The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial divers...Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.展开更多
基金Supported by Special Fund for the Industrial Technology System Construction of Modern Agriculture(CARS-06-01-03)
文摘' Ji2055A' is a superior sterile line sorghum bred by Institute of Crop Resources, Jilin Academy of Agricultural Sciences. It has a growing season of 112 days and a plant height of 70 cm. With a stable sterility rate of 100%, ' Ji2055A' has a stable male sterility and highly viable stignms. Selfing won't lead to seeds, This sterile line is strongly resistant to drought and lodging in addition to resistance to leaf spot and head smut. Generally, it has a yield of 3 000 -4 000 kg/hm2 and the hybrid seed yield is between 4 000 - 5 000 kg/hm2, with a high combining ability. There are six varieties approved by the state and the province, as well as another eight new combines under regional testing. The obtained hybrids are strongly resistant, widely adaptable with a great potential to increase yield, ' Ji2055A' has promoted the breeding and production of spring early maturing sorghum in China.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘The main objective of this work is to study the effect of sulphur application and irrigation water quantity on some soil properties of the calcareous soils and to limit the suitable concentration to obtain satisfactory yield of faba beab under saline conditions. The study area (Tamyia district, Fayoum Governorate, Egypt) is characterized by a hot and dry climate in general with annual rainfall average of 8 mm/year, whereas the evaporation rates average ranging between 3.5 to10 mm/day. Faba bean (Vicia faba L.) was sown at 18 November 2010 and harvested at 26 April 2011. Total water consumed during faba bean growing season were 623.7 and747.2 m3/ fed for 100% and 120% irrigation treatments with increasing ranged between 3.5% and 3.7% in same sequence. Results showed that values of soil EC, pH and CaCO3 was improved as a result of both irrigation and S treatments. The improvement resulted in a gradual reduction of the studied soil properties by about 10.3%, 3.2%;17.0% and 23.1%, 4.3%;11.3% comparing S treated plot relative to the control plot at 100 and 120% irrigation treatments. Application S improved water content under studied soil constant and these increases were 8.8%, 11.8%, 8.3% and 16.9% for SP, FC, WP and AW, respectively relative to the control plots. Irrigation 100% had a positive effect on the drainable pores% which increased by about 7.0% comparing with 120% irrigation treatments. While hydraulic conductivity increased by about 16.4% and percentage of increase drainable pores was 14.0% and 21.4% for 100% and 120% irrigation treatments comparing 3rd layer with the 1st one, respectively. Increasing irrigation water from 100% to 120% resulted increasing in the studied macronutrients, N, P and K, by about 80.8%, 144.9% and 72.9%, respectively;while they increased in plant by about 118.8%, 132.8% and 62.2% as compared with the control one, respectively as a result of S application. Results showed that Na, Cl and Na/K ratio that increasing irrigation water caused increase by 2.02%, 11.11% for Na and Cl, while reduction in the ratio between Na and K was observed with value –15.7% as compared 120 with 100% irrigation treatments. S application cause slightly increases in Na content (3.55%) and moderately increases with Cl (34.38%), which led to decrease Na:K ratio by about 39.4%. Increasing irrigation water by 20%resulted in a gradual increase of both yield and water use efficiency (WUE) of faba bean plants compared with the control plants. Irrigation treatments significantly decreased the contents of proline in dry weight seed of faba bean gradually as a result of increase irrigation quantity (from 100% to 120%) and the reduction was 9.7%. While S addition decreased proline by about 15.9%. According to the interaction effect between irrigation and S application treatments, S improved proline content by about 20.4% and 11.2% relative to the control treatments under 100% and 120% irrigation treatments, respectively %.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
文摘This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.
基金Supported by the Shanghai Rising-Star Program(No.21QA1401500)Shanghai Natural Science Foundation(No.23ZR1409200).
文摘Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMILE)enhancement.SMILE is a safe,minimally invasive corneal laser surgery using a femtosecond laser to create an extractable stromal lenticule.
基金The results and knowledge included herein have been obtained owing to support from the following institutional grant.Internal grant agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,Grant No.2023A0004-“Text Segmentation Methods of Historical Alphabets in OCR Development”.https://iga.pef.czu.cz/.Funds were granted to T.Novák,A.Hamplová,O.Svojše,and A.Veselýfrom the author team.
文摘This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
基金supported by the Guangdong Technical System of Peanut and Soybean Industry(2023KJ136-05)China Agriculture Research System(CARS-15)。
文摘This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.
文摘Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with reflux esophagitis admitted to our hospital from May 2022 to May 2023 were randomly grouped into a control group and a research group, with 42 cases each. The control group was given conventional nursing care and the research group was given refined nursing care. The psychological state and treatment adherence of the two groups of patients after the nursing intervention were compared. Results: After the nursing intervention, the self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of the research group were lower than those of the control group (P < 0.05). The treatment compliance of the research group was better than the control group (P < 0.05). Conclusion: The implementation of refined nursing care for elderly patients with reflux esophagitis exhibited a significant effect on improving the patient’s psychological state, treatment compliance, and rehabilitation.
基金The authors acknowledge FAPESP for funding the Research Project Number 2017-18-782-6 and the Grant 2021/07458-9.
文摘Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.
基金funded by the Shandong Provincial Key Research and Development Program(No.2019GSF107031).
文摘Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.
基金The first author(V.Kamchoom)acknowledges the grant(Grant No.FRB66065/0258-RE-KRIS/FF66/53)from King Mongkut’s Insti-tute of Technology Ladkrabang(KMITL)and National Science,Research and Innovation Fund(NSRF)the grant under Climate Change and Climate Variability Research in Monsoon Asia(CMON3)from the National Research Council of Thailand(NRCT)(Grant No.N10A650844)the National Natural Science Foundation of China(NSFC).
文摘The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
基金supported by the National Natural Science Foundation of China(31960258)the Graduate Research Innovation Project of Xinjiang Uygur Autonomous Region(XJ2023G119).
文摘Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.