In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete t...In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete the theory in practice, inasmuch as they are necessary for its correct application in electronic structure calculations;this understanding elucidates what appears to have been the crucial misunderstanding for 50 years, namely, the confusion between a stationary solution, attainable with most basis sets, following self-consistent iterations, with the ground state solution. The latter is obtained by a calculation that employs the well-defined optimal basis set for the system. The aim of this work is to review the above understanding and to extend it to the relativistic generalization of density functional theory by Rajagopal and Callaway [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken in the non-relativistic case, with the four-component current density, in the former, replacing the electronic charge density, in the latter. This new understanding, which completes relativistic DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from molecules to solids) containing them—as is the case for some high temperature superconductors.展开更多
The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades.In the present article,the bandgap tuning and its influen...The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades.In the present article,the bandgap tuning and its influence on optical properties of In1-xGaxN/P,where(x=0.0,0.25,0.50,0.75,and 1.0)alloys are comprehensively analyzed by density functional theory based on full-potential linearized augmented plane wave method(FP-LAPW)and modified Becke and Johnson potentials(TB-mBJ).The direct bandgaps turn from 0.7 eV to 3.44 eV,and 1.41 eV to 2.32 eV for In1-xGaxN/P alloys,which increases their potentials for optoelectronic devices.The optical properties are discussed such as dielectric constants,refraction,absorption,optical conductivity,and reflection.The light is polarized in the low energy region with minimum reflection.The absorption and optical conduction are maxima in the visible region,and they are shifted into the ultraviolet region by Ga doping.Moreover,static dielectric constant e1(0)is in line with the bandgap from Penn’s model.展开更多
We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PN...We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation.The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation.Then,the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations.A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed,which reduces computational complexity from O(N2)to O(NlogN),where N is the number of grid points.Integrals involving the Dirac delta function are evaluated directly by coordinate transformation,which yields more accurate results compared to applying numerical quadrature to an approximated delta function.Numerical results for ion and electron transport in solid electrolyte for lithiumion(Li-ion)batteries are shown to be in good agreement with the experimental data and the results from previous studies.展开更多
To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulate...To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements.展开更多
An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certa...An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certain interval. The present enhanced KR-FMF incorporates respectively, for aim of comparison, a recent 3rd-order expansion equation of state (EOS) and a Boublfk's extension of Kolafa's EOS for HS mixtures. It is indicated that the two versions of the EOS lead to, in the framework of the enhanced KR-FMF, similar density profiles, but the 3rd-order EOS is more consistent with an exact scaled particle theory (SPT) relation than the BK EOS. Extensive comparison between the enhanced KR-FMF-3rd-order EOS predictions and corresponding density profiles produced in different periods indicates the excellent performance of the present enhanced KR-FMF-3rd-order EOS in comparison with other available density functional approximations (DFAs). There are two anomalous situations from whose density profiles all DFAs studied deviate significantly; however, subsequent new computer simulation results for state conditions similar to the two anomalous situations are in very excellent agreement with the present enhanced KR-FMF-3rd-order EOS. The present paper indicates that (i) the validity of the "naive" substitution elaborated in the present paper and peculiar to the original KR-FMF is still in operation even if inhomogeneoas mixtures are being dealt with; (ii) the high accuracy and self-consistency of the third order EOS seem to allow for application of the KR-FMF-third order EOS to more severe state conditions; and (iii) the "naive" substitution enables very easy the combination of the original KR-FMF with future's more accurate but potentially more complicated EOS of hard sphere mixtures.展开更多
Quinones have been widely studied as a potential catholyte in water-based redox flow batteries(RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety of quinones and deriva...Quinones have been widely studied as a potential catholyte in water-based redox flow batteries(RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety of quinones and derivatives offers exciting opportunities to optimize the device performance while poses theoretical challenges to quantify their electrochemical behavior as required for molecular design.Computational screening of target quinones with high performance is far from satisfactory.While solvation of quinones affects their potential application in RFBs in terms of both electrochemical windows,stability,and charge transport,experimental data for the solvation structure and solvation free energies are rarely available if not incomplete.Besides,conventional thermodynamic models are mostly unreliable to estimate the properties of direct interest for electrochemical applications.Here,we analyze the hydration free energies of more than 1,400 quinones by combining the first-principles calculations and the classical density functional theory.In order to attain chemical insights and possible trends,special attention is placed on the effects of"backbones"and functional groups on the solvation behavior.The theoretical results provide a thermodynamic basis for the design,synthesis,and screening of high-performance catholytes for electrical energy storage.展开更多
The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination r...The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination rate. To solve these problems,herein,noble metals(Pt and Au)decorated Sr-incorporated g-C_(3)N_(4) photocatalysts are fabricated via the simple calcination and photo-deposition methods. The Sr-incorporation remarkably reduced the g-C_(3)N_(4) band gap from 2.7 to 2.54 eV,as evidenced by the UV–visible absorption spectra and the density functional theory results. The CO_(2) conversion performance of the catalysts was evaluated under visible light irradiation. The Pt/0.15 Sr-CN sample produced 48.55 and 74.54 μmol h-1 g-1 of CH_(4) and CO,respectively.These amounts are far greater than that produced by the Au/0.15 Sr-CN,0.15 Sr-CN,and CN samples. A high quantum e ciency of 2.92% is predicted for the Pt/0.15 Sr-CN sample. Further,the stability of the photocatalyst is confirmed via the photocatalytic recyclable test. The improved CO_(2) conversion performance of the catalyst is accredited to the promoted light absorption and remarkably enhanced charge separation via the Sr-incorporated mid gap states and the localized surface plasmon resonance e ect induced by noble metal nanoparticles.This work will provide a new approach for promoting the catalytic e ciency of g-C_(3)N_(4) for e cient solar fuel production.展开更多
Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications ofte...Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications often entail electrodes with complicated pore structures,theoretical studies are mostly restricted to EDLCs of simple geometry such as planar or slit pores ignoring the curvature effects of the electrode surface.Significant gaps exist regarding the EDLC performance and the interfacial structure.Herein the classical density functional theory(CDFT)is used to study the capacitance and interfacial behavior of spherical electric double layers within a coarse-grained model.The capacitive performance is associated with electrode curvature,surface potential,and electrolyte concentration and can be correlated with a regression-tree(RT)model.The combination of CDFT with machine-learning methods provides a promising quantitative framework useful for the computational screening of porous electrodes and novel electrolytes.展开更多
文摘In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete the theory in practice, inasmuch as they are necessary for its correct application in electronic structure calculations;this understanding elucidates what appears to have been the crucial misunderstanding for 50 years, namely, the confusion between a stationary solution, attainable with most basis sets, following self-consistent iterations, with the ground state solution. The latter is obtained by a calculation that employs the well-defined optimal basis set for the system. The aim of this work is to review the above understanding and to extend it to the relativistic generalization of density functional theory by Rajagopal and Callaway [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken in the non-relativistic case, with the four-component current density, in the former, replacing the electronic charge density, in the latter. This new understanding, which completes relativistic DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from molecules to solids) containing them—as is the case for some high temperature superconductors.
文摘The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades.In the present article,the bandgap tuning and its influence on optical properties of In1-xGaxN/P,where(x=0.0,0.25,0.50,0.75,and 1.0)alloys are comprehensively analyzed by density functional theory based on full-potential linearized augmented plane wave method(FP-LAPW)and modified Becke and Johnson potentials(TB-mBJ).The direct bandgaps turn from 0.7 eV to 3.44 eV,and 1.41 eV to 2.32 eV for In1-xGaxN/P alloys,which increases their potentials for optoelectronic devices.The optical properties are discussed such as dielectric constants,refraction,absorption,optical conductivity,and reflection.The light is polarized in the low energy region with minimum reflection.The absorption and optical conduction are maxima in the visible region,and they are shifted into the ultraviolet region by Ga doping.Moreover,static dielectric constant e1(0)is in line with the bandgap from Penn’s model.
基金the Materials Synthesis and Simulation across Scales(MS3)Initiative(Laboratory Directed Research and Development(LDRD)Program)at Pacific Northwest National Laboratory(PNNL).Work by GL was supported by the U.S.Department of Energy(DOE)Office of Science’s Advanced Scientific Computing Research Applied Mathematics program and work by BZ by Early Career Award Initiative(LDRD Program)at PNNL.PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.
文摘We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation.The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation.Then,the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations.A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed,which reduces computational complexity from O(N2)to O(NlogN),where N is the number of grid points.Integrals involving the Dirac delta function are evaluated directly by coordinate transformation,which yields more accurate results compared to applying numerical quadrature to an approximated delta function.Numerical results for ion and electron transport in solid electrolyte for lithiumion(Li-ion)batteries are shown to be in good agreement with the experimental data and the results from previous studies.
文摘To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements.
基金Supported by the National Natural Science Foundation of China under Grant No.20973202
文摘An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certain interval. The present enhanced KR-FMF incorporates respectively, for aim of comparison, a recent 3rd-order expansion equation of state (EOS) and a Boublfk's extension of Kolafa's EOS for HS mixtures. It is indicated that the two versions of the EOS lead to, in the framework of the enhanced KR-FMF, similar density profiles, but the 3rd-order EOS is more consistent with an exact scaled particle theory (SPT) relation than the BK EOS. Extensive comparison between the enhanced KR-FMF-3rd-order EOS predictions and corresponding density profiles produced in different periods indicates the excellent performance of the present enhanced KR-FMF-3rd-order EOS in comparison with other available density functional approximations (DFAs). There are two anomalous situations from whose density profiles all DFAs studied deviate significantly; however, subsequent new computer simulation results for state conditions similar to the two anomalous situations are in very excellent agreement with the present enhanced KR-FMF-3rd-order EOS. The present paper indicates that (i) the validity of the "naive" substitution elaborated in the present paper and peculiar to the original KR-FMF is still in operation even if inhomogeneoas mixtures are being dealt with; (ii) the high accuracy and self-consistency of the third order EOS seem to allow for application of the KR-FMF-third order EOS to more severe state conditions; and (iii) the "naive" substitution enables very easy the combination of the original KR-FMF with future's more accurate but potentially more complicated EOS of hard sphere mixtures.
基金supported by the National Natural Science Foundation of China(U1862204)the U.S.National Science Foundation(NSF-1940118)。
文摘Quinones have been widely studied as a potential catholyte in water-based redox flow batteries(RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety of quinones and derivatives offers exciting opportunities to optimize the device performance while poses theoretical challenges to quantify their electrochemical behavior as required for molecular design.Computational screening of target quinones with high performance is far from satisfactory.While solvation of quinones affects their potential application in RFBs in terms of both electrochemical windows,stability,and charge transport,experimental data for the solvation structure and solvation free energies are rarely available if not incomplete.Besides,conventional thermodynamic models are mostly unreliable to estimate the properties of direct interest for electrochemical applications.Here,we analyze the hydration free energies of more than 1,400 quinones by combining the first-principles calculations and the classical density functional theory.In order to attain chemical insights and possible trends,special attention is placed on the effects of"backbones"and functional groups on the solvation behavior.The theoretical results provide a thermodynamic basis for the design,synthesis,and screening of high-performance catholytes for electrical energy storage.
基金financially supported by the Ministry of Science and Technology of China (Grant No. 2018YFA0702100)the National Natural Science Foundation of China (Grant No. 11874169,51972129)+4 种基金the National Key R&D Program of China (Grant No. 2017YFE0120500)the Key Research and Development Program of Hubei (Grant No. 2020BAB079)the South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps (Grants No. 2020DB002)Engineering and Physical Sciences Research Council (EP/T025875/1)the Hubei “ChuTian Young Scholar” program。
文摘The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination rate. To solve these problems,herein,noble metals(Pt and Au)decorated Sr-incorporated g-C_(3)N_(4) photocatalysts are fabricated via the simple calcination and photo-deposition methods. The Sr-incorporation remarkably reduced the g-C_(3)N_(4) band gap from 2.7 to 2.54 eV,as evidenced by the UV–visible absorption spectra and the density functional theory results. The CO_(2) conversion performance of the catalysts was evaluated under visible light irradiation. The Pt/0.15 Sr-CN sample produced 48.55 and 74.54 μmol h-1 g-1 of CH_(4) and CO,respectively.These amounts are far greater than that produced by the Au/0.15 Sr-CN,0.15 Sr-CN,and CN samples. A high quantum e ciency of 2.92% is predicted for the Pt/0.15 Sr-CN sample. Further,the stability of the photocatalyst is confirmed via the photocatalytic recyclable test. The improved CO_(2) conversion performance of the catalyst is accredited to the promoted light absorption and remarkably enhanced charge separation via the Sr-incorporated mid gap states and the localized surface plasmon resonance e ect induced by noble metal nanoparticles.This work will provide a new approach for promoting the catalytic e ciency of g-C_(3)N_(4) for e cient solar fuel production.
基金sponsored by the National Natural Science Foundation of China(Nos.91834301,21908053,and 21808055)Shanghai Sailing Program(19YF1411700)financial support from the Fluid Interface Reactions,Structures and Transport(FIRST)Center,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Basic Energy Sciences。
文摘Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications often entail electrodes with complicated pore structures,theoretical studies are mostly restricted to EDLCs of simple geometry such as planar or slit pores ignoring the curvature effects of the electrode surface.Significant gaps exist regarding the EDLC performance and the interfacial structure.Herein the classical density functional theory(CDFT)is used to study the capacitance and interfacial behavior of spherical electric double layers within a coarse-grained model.The capacitive performance is associated with electrode curvature,surface potential,and electrolyte concentration and can be correlated with a regression-tree(RT)model.The combination of CDFT with machine-learning methods provides a promising quantitative framework useful for the computational screening of porous electrodes and novel electrolytes.