This study presents a methodology to evaluate and prevent security vulnerabilities issues for web applications.The analysis process is based on the use of techniques and tools that allow to perform security assessment...This study presents a methodology to evaluate and prevent security vulnerabilities issues for web applications.The analysis process is based on the use of techniques and tools that allow to perform security assessments of white box and black box,to carry out the security validation of a web application in an agile and precise way.The objective of the methodology is to take advantage of the synergies of semi-automatic static and dynamic security analysis tools and manual checks.Each one of the phases contemplated in the methodology is supported by security analysis tools of different degrees of coverage,so that the results generated in one phase are used as feed for the following phases in order to get an optimized global security analysis result.The methodology can be used as part of other more general methodologies that do not cover how to use static and dynamic analysis tools in the implementation and testing phases of a Secure Software Development Life Cycle(SSDLC).A practical application of the methodology to analyze the security of a real web application demonstrates its effectiveness by obtaining a better optimized vulnerability detection result against the true and false positive metrics.Dynamic analysis with manual checking is used to audit the results,24.6 per cent of security vulnerabilities reported by the static analysis has been checked and it allows to study which vulnerabilities can be directly exploited externally.This phase is very important because it permits that each reported vulnerability can be checked by a dynamic second tool to confirm whether a vulnerability is true or false positive and it allows to study which vulnerabilities can be directly exploited externally.Dynamic analysis finds six(6)additional critical vulnerabilities.Access control analysis finds other five(5)important vulnerabilities such as Insufficient Protected Passwords or Weak Password Policy and Excessive Authentication Attacks,two vulnerabilities that permit brute force attacks.展开更多
Ciprofol,as a new type of short-acting intravenous anesthetic drug,belongs to the category of gamma-aminobutyric acid(GABA)receptor agonists.Its unique chemical structure,through the introduction of the cyclopropyl gr...Ciprofol,as a new type of short-acting intravenous anesthetic drug,belongs to the category of gamma-aminobutyric acid(GABA)receptor agonists.Its unique chemical structure,through the introduction of the cyclopropyl group in the isopropyl side chain of propofol,constructs a new type of chiral molecule,which significantly enhances the spatial effect,and improves the affinity for GABA receptors.Its pharmacological properties are characterized by high potency,rapid onset of action,rapid recovery,low accumulation,and minimal adverse reactions.Therefore,it has a wide range of applications in various endoscopic diagnostic and therapeutic operations,ICU sedation,and general anesthesia.In this paper,the related knowledge of ciprofol and the development of clinical application research are comprehensively sorted out and synthesized,to provide a solid theoretical basis for the rational application of ciprofol in clinical practice.At the same time,the future research direction of ciprofol will also be prospected to provide valuable references for research in related fields.展开更多
As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industr...As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industries, in addition to other traditional applications in aluminum alloying,steel desulfurization and protective anodes. In recent years, research has shown significant potential for Mg to become a "technology metal"in a variety of new applications from energy storage/battery to biomedical products. However, global Mg production has shown steady but moderate growth in the last three decades. Mg applications as an industry metal are still limited due to some sustainability concerns of primary Mg production, as well as a number of technical issues related to the structural and corrosion performance of commercial Mg alloys.New Mg applications as an industrial or technology metal face tremendous technical challenges, which have been reflected in the intensified global research efforts in the last twenty years. This paper will review some past and present applications, and discuss future opportunities and challenges for Mg research and applications for the global Mg community.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
Mobile health apps (MHAs) and medical apps (MAs) are becoming increasinglypopular as digital interventions in a wide range of health-related applications inalmost all sectors of healthcare. The surge in demand for dig...Mobile health apps (MHAs) and medical apps (MAs) are becoming increasinglypopular as digital interventions in a wide range of health-related applications inalmost all sectors of healthcare. The surge in demand for digital medical solutionshas been accelerated by the need for new diagnostic and therapeutic methods inthe current coronavirus disease 2019 pandemic. This also applies to clinicalpractice in gastroenterology, which has, in many respects, undergone a recentdigital transformation with numerous consequences that will impact patients andhealth care professionals in the near future. MHAs and MAs are considered tohave great potential, especially for chronic diseases, as they can support the selfmanagementof patients in many ways. Despite the great potential associated withthe application of MHAs and MAs in gastroenterology and health care in general,there are numerous challenges to be met in the future, including both the ethicaland legal aspects of applying this technology. The aim of this article is to providean overview of the current status of MHA and MA use in the field ofgastroenterology, describe the future perspectives in this field and point out someof the challenges that need to be addressed.展开更多
Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing se...Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" ...[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ...This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.展开更多
Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMI...Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMILE)enhancement.SMILE is a safe,minimally invasive corneal laser surgery using a femtosecond laser to create an extractable stromal lenticule.展开更多
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma...This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.展开更多
Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with ...Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with reflux esophagitis admitted to our hospital from May 2022 to May 2023 were randomly grouped into a control group and a research group, with 42 cases each. The control group was given conventional nursing care and the research group was given refined nursing care. The psychological state and treatment adherence of the two groups of patients after the nursing intervention were compared. Results: After the nursing intervention, the self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of the research group were lower than those of the control group (P < 0.05). The treatment compliance of the research group was better than the control group (P < 0.05). Conclusion: The implementation of refined nursing care for elderly patients with reflux esophagitis exhibited a significant effect on improving the patient’s psychological state, treatment compliance, and rehabilitation.展开更多
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri...Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.展开更多
文摘This study presents a methodology to evaluate and prevent security vulnerabilities issues for web applications.The analysis process is based on the use of techniques and tools that allow to perform security assessments of white box and black box,to carry out the security validation of a web application in an agile and precise way.The objective of the methodology is to take advantage of the synergies of semi-automatic static and dynamic security analysis tools and manual checks.Each one of the phases contemplated in the methodology is supported by security analysis tools of different degrees of coverage,so that the results generated in one phase are used as feed for the following phases in order to get an optimized global security analysis result.The methodology can be used as part of other more general methodologies that do not cover how to use static and dynamic analysis tools in the implementation and testing phases of a Secure Software Development Life Cycle(SSDLC).A practical application of the methodology to analyze the security of a real web application demonstrates its effectiveness by obtaining a better optimized vulnerability detection result against the true and false positive metrics.Dynamic analysis with manual checking is used to audit the results,24.6 per cent of security vulnerabilities reported by the static analysis has been checked and it allows to study which vulnerabilities can be directly exploited externally.This phase is very important because it permits that each reported vulnerability can be checked by a dynamic second tool to confirm whether a vulnerability is true or false positive and it allows to study which vulnerabilities can be directly exploited externally.Dynamic analysis finds six(6)additional critical vulnerabilities.Access control analysis finds other five(5)important vulnerabilities such as Insufficient Protected Passwords or Weak Password Policy and Excessive Authentication Attacks,two vulnerabilities that permit brute force attacks.
文摘Ciprofol,as a new type of short-acting intravenous anesthetic drug,belongs to the category of gamma-aminobutyric acid(GABA)receptor agonists.Its unique chemical structure,through the introduction of the cyclopropyl group in the isopropyl side chain of propofol,constructs a new type of chiral molecule,which significantly enhances the spatial effect,and improves the affinity for GABA receptors.Its pharmacological properties are characterized by high potency,rapid onset of action,rapid recovery,low accumulation,and minimal adverse reactions.Therefore,it has a wide range of applications in various endoscopic diagnostic and therapeutic operations,ICU sedation,and general anesthesia.In this paper,the related knowledge of ciprofol and the development of clinical application research are comprehensively sorted out and synthesized,to provide a solid theoretical basis for the rational application of ciprofol in clinical practice.At the same time,the future research direction of ciprofol will also be prospected to provide valuable references for research in related fields.
基金the financial support from the United States National Science Foundation and Department of Energy。
文摘As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industries, in addition to other traditional applications in aluminum alloying,steel desulfurization and protective anodes. In recent years, research has shown significant potential for Mg to become a "technology metal"in a variety of new applications from energy storage/battery to biomedical products. However, global Mg production has shown steady but moderate growth in the last three decades. Mg applications as an industry metal are still limited due to some sustainability concerns of primary Mg production, as well as a number of technical issues related to the structural and corrosion performance of commercial Mg alloys.New Mg applications as an industrial or technology metal face tremendous technical challenges, which have been reflected in the intensified global research efforts in the last twenty years. This paper will review some past and present applications, and discuss future opportunities and challenges for Mg research and applications for the global Mg community.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
文摘Mobile health apps (MHAs) and medical apps (MAs) are becoming increasinglypopular as digital interventions in a wide range of health-related applications inalmost all sectors of healthcare. The surge in demand for digital medical solutionshas been accelerated by the need for new diagnostic and therapeutic methods inthe current coronavirus disease 2019 pandemic. This also applies to clinicalpractice in gastroenterology, which has, in many respects, undergone a recentdigital transformation with numerous consequences that will impact patients andhealth care professionals in the near future. MHAs and MAs are considered tohave great potential, especially for chronic diseases, as they can support the selfmanagementof patients in many ways. Despite the great potential associated withthe application of MHAs and MAs in gastroenterology and health care in general,there are numerous challenges to be met in the future, including both the ethicaland legal aspects of applying this technology. The aim of this article is to providean overview of the current status of MHA and MA use in the field ofgastroenterology, describe the future perspectives in this field and point out someof the challenges that need to be addressed.
基金supported by the National Natural Science Foundation of China(Grant No.31971843)the Technology System of Modern Agricultural Industry in Guangdong Province,China(Grant No.2020KJ105)+1 种基金the Guangzhou Science and Technology Project,Guangdong Province,China(Grant No.202103000075)the Special Rural Revitalization Funds of Guangdong Province,China(Grant No.2021KJ382)。
文摘Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金Supported by Construction Project of National Rapeseed Modern Industrial Technology System (nycytx-00563)Guizhou Academy of Agricultural Sciences "Research of High Yield and High Quality Cultivation Technology for High Grade Hybrid Rapeseed with High Oil" [C ZX(2007)015]+2 种基金Department of Agriculture of Guizhou Province "Research, Promotion and Application of High Yield Cultivation Technology for Hybridized Rapeseed of New Variety Youyan 599" [QNYZZ (2009) 007]Guizhou Academy of Agricultural Sciences "Large Area Intermediate Experiment, Promotion and Application of Hybridized Rapeseed Youyan 599" [QNKZX (2009) 030]Department of Agriculture of Guizhou Province "Integrated Innovation of Seed Production Techniques and Large Area Demonstration for New High Oil Rapeseed Hybrid Variety Sanbei 98 [QKH NY (2010) 3087]~~
文摘[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
文摘This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.
基金Supported by the Shanghai Rising-Star Program(No.21QA1401500)Shanghai Natural Science Foundation(No.23ZR1409200).
文摘Dear Editor,We present a case of combined application of CIRCLE software(Carl Zeiss Meditec AG,Germany)and topography-guided laser-assisted in situ keratomileusis(Topo-LASIK)for small-incision lenticule extraction(SMILE)enhancement.SMILE is a safe,minimally invasive corneal laser surgery using a femtosecond laser to create an extractable stromal lenticule.
基金supported by the Guangdong Technical System of Peanut and Soybean Industry(2023KJ136-05)China Agriculture Research System(CARS-15)。
文摘This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.
文摘Objective: To investigate the application effect of refined nursing care in the care for elderly patients with reflux esophagitis. Methods: Following the difference in nursing style, 84 cases of elderly patients with reflux esophagitis admitted to our hospital from May 2022 to May 2023 were randomly grouped into a control group and a research group, with 42 cases each. The control group was given conventional nursing care and the research group was given refined nursing care. The psychological state and treatment adherence of the two groups of patients after the nursing intervention were compared. Results: After the nursing intervention, the self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of the research group were lower than those of the control group (P < 0.05). The treatment compliance of the research group was better than the control group (P < 0.05). Conclusion: The implementation of refined nursing care for elderly patients with reflux esophagitis exhibited a significant effect on improving the patient’s psychological state, treatment compliance, and rehabilitation.
基金The authors acknowledge FAPESP for funding the Research Project Number 2017-18-782-6 and the Grant 2021/07458-9.
文摘Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments.