Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixa...Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction展开更多
Compared to surgery,interventional and hybrid-operating-room(OR) approaches diagnose or treat pathology with the most minimally invasive techniques possible.By minimizing the physical trauma to the patient,peripheral ...Compared to surgery,interventional and hybrid-operating-room(OR) approaches diagnose or treat pathology with the most minimally invasive techniques possible.By minimizing the physical trauma to the patient,peripheral or hybrid approaches can reduce infection rates and recovery time as well as shorten hospital stays.Minimally invasive approaches therefore are the trend and often the preferred choice,and may even be the only option for the patients associated with high surgery risks.Common interventional imaging modalities include 2-D X-ray fluoroscopy and ultrasound.However,fluoroscopic images do not display the anatomic structures without a contrast agent,which on the other hand,needs to be minimized for patients' safety.Ultrasound images suffer from relatively low image quality and tissue contrast problems.To augment the doctor's view of the patient's anatomy and help doctors navigate the devices to the targeted area with more confidence and a higher accuracy,high-resolution pre-operative volumetric data such as computed tomography and/or magnetic resonance can be fused with intra-operative 2-D images during interventions.A seamless workflow and accurate 2-D/3-D registrationas well as cardiac and/or respiratory motion compensation are the key components for a successful image guidance system using a patient-specific 3-D model.Dr.Liao's research has been focused on developing methods and systems of 3-D model guidance for various interventions and hybrid-OR applications.Dr.Liao' s work has led to several Siemens products with high clinical and/or market impact and a good number of scientific publications in leading journals/conferences on medical imaging.展开更多
Silicon-based semiconductor technology has made great breakthroughs in the past few decades,but it is reaching the physical limits of Moore’s law.In recent years,the presence of two-dimensional(2 D)materials was rega...Silicon-based semiconductor technology has made great breakthroughs in the past few decades,but it is reaching the physical limits of Moore’s law.In recent years,the presence of two-dimensional(2 D)materials was regarded as an opportunity to break the limitation of traditional siliconbased optoelectronic devices owing to their special structure and superior properties.In consideration of the widely studied hybrid integration of 2 D material detectors and 3 D siliconbased systems,in this paper,the basic properties of several 2 D materials used in photodetectors are summarized.Subsequently,the progress in silicon photonic integrated photodetectors based on 2 D materials is reviewed,followed by the summarization of the device structure and main performances.Then,the combination of some other traditional and2 D devices is discussed as a supplement.Finally,the prospective development of the hybrid 2 D/3 D silicon-based heterostructures is expected.展开更多
文摘Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction
文摘Compared to surgery,interventional and hybrid-operating-room(OR) approaches diagnose or treat pathology with the most minimally invasive techniques possible.By minimizing the physical trauma to the patient,peripheral or hybrid approaches can reduce infection rates and recovery time as well as shorten hospital stays.Minimally invasive approaches therefore are the trend and often the preferred choice,and may even be the only option for the patients associated with high surgery risks.Common interventional imaging modalities include 2-D X-ray fluoroscopy and ultrasound.However,fluoroscopic images do not display the anatomic structures without a contrast agent,which on the other hand,needs to be minimized for patients' safety.Ultrasound images suffer from relatively low image quality and tissue contrast problems.To augment the doctor's view of the patient's anatomy and help doctors navigate the devices to the targeted area with more confidence and a higher accuracy,high-resolution pre-operative volumetric data such as computed tomography and/or magnetic resonance can be fused with intra-operative 2-D images during interventions.A seamless workflow and accurate 2-D/3-D registrationas well as cardiac and/or respiratory motion compensation are the key components for a successful image guidance system using a patient-specific 3-D model.Dr.Liao's research has been focused on developing methods and systems of 3-D model guidance for various interventions and hybrid-OR applications.Dr.Liao' s work has led to several Siemens products with high clinical and/or market impact and a good number of scientific publications in leading journals/conferences on medical imaging.
基金financially supported by the National Key Research and Development Program of China(2017YFA0207500)the National Natural Science Foundation of China(62125404)the CASJSPS Cooperative Research Project(GJHZ2021131)。
文摘Silicon-based semiconductor technology has made great breakthroughs in the past few decades,but it is reaching the physical limits of Moore’s law.In recent years,the presence of two-dimensional(2 D)materials was regarded as an opportunity to break the limitation of traditional siliconbased optoelectronic devices owing to their special structure and superior properties.In consideration of the widely studied hybrid integration of 2 D material detectors and 3 D siliconbased systems,in this paper,the basic properties of several 2 D materials used in photodetectors are summarized.Subsequently,the progress in silicon photonic integrated photodetectors based on 2 D materials is reviewed,followed by the summarization of the device structure and main performances.Then,the combination of some other traditional and2 D devices is discussed as a supplement.Finally,the prospective development of the hybrid 2 D/3 D silicon-based heterostructures is expected.