The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or m...The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and...The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(展开更多
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c...Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.展开更多
ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS ...ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventiona...In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventional centralizedUFLS schemes, no centralized master station gathering all thebuses’ information is required. Instead, each bus decides itsown load shedding amount by only relying on limited peer-topeer communication. However, such UFLS strategy may sufferfrom some unexpected cyber-attacks such as integrity attacksand denial of service (DoS) attack. The latter DoS attack aimsto degrade the system performance by jamming or breakingthe communication, which is of high probability to happen inpractical power system. To assess the vulnerability of proposeddistributed UFLS algorithm, the effect of DoS attack on distributed average consensus algorithm is theoretically derived,which indicates that the final consensus value can be estimatedby a given attack probability. It is also investigated that such DoSattack does harm to the load shedding amount and finally affectsthe system frequency performance in the active distributionpower system. Several case studies implemented on an IEEE33-bus active distribution power system are conducted to verifythe effectiveness of the theoretical findings and investigate thevulnerability of the considered power system.展开更多
本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、...本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、存储、网络资源的统一管理。首先,针对Ceph集群在存储时的数据分布不均情况对平台存储性能的影响,提出一种基于好感度的数据存储优化算法,利用好感度因子约束数据的存储位置,有效提高集群中所有OSD节点存储数据的均衡性。同时,设计了一种基于软件定义网络(Software Defined Network,SDN)的DDoS洪泛攻击检测与缓解方法,有效降低了对物理设备性能的要求,最后结合Ryu控制器的可编程性,实现DDoS洪泛攻击缓解方法。展开更多
针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型G...针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型GVBNet(global variable block net),使用攻击密度自适应计算稀疏注意力。利用信息熵以及信息增益分析提取攻击流量的连续字节作为特征向量,通过构建基于GVBNet的网络模型在两种数据集上进行训练。实验结果表明,该方法具有良好的识别效果、检测速度以及抗干扰能力,在不同的环境下具有应用价值。展开更多
Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,de...Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techniques in terms of accuracy,precision,and recall.This superiority stems from ACIDS-PELT’s ability to overcome limitations associated with approximation and imprecision in change point detection while offering a more accurate and precise approach to detecting security threats in dynamic cloud environments.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
文摘The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01239)National Natural Science Foundation of China(No.52177119)Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform).
文摘Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.
文摘ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
基金the National Key Research and Development Program of China(2017YFB0903000)the National Natural Science Foundation of China(No.51677116)Key Research and Development Program of Zhejiang Province under Grant 2019C01149,in part by the Science and Technology Project of State Grid Corporation of China under Grant 5211DS180031.
文摘In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventional centralizedUFLS schemes, no centralized master station gathering all thebuses’ information is required. Instead, each bus decides itsown load shedding amount by only relying on limited peer-topeer communication. However, such UFLS strategy may sufferfrom some unexpected cyber-attacks such as integrity attacksand denial of service (DoS) attack. The latter DoS attack aimsto degrade the system performance by jamming or breakingthe communication, which is of high probability to happen inpractical power system. To assess the vulnerability of proposeddistributed UFLS algorithm, the effect of DoS attack on distributed average consensus algorithm is theoretically derived,which indicates that the final consensus value can be estimatedby a given attack probability. It is also investigated that such DoSattack does harm to the load shedding amount and finally affectsthe system frequency performance in the active distributionpower system. Several case studies implemented on an IEEE33-bus active distribution power system are conducted to verifythe effectiveness of the theoretical findings and investigate thevulnerability of the considered power system.
文摘本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、存储、网络资源的统一管理。首先,针对Ceph集群在存储时的数据分布不均情况对平台存储性能的影响,提出一种基于好感度的数据存储优化算法,利用好感度因子约束数据的存储位置,有效提高集群中所有OSD节点存储数据的均衡性。同时,设计了一种基于软件定义网络(Software Defined Network,SDN)的DDoS洪泛攻击检测与缓解方法,有效降低了对物理设备性能的要求,最后结合Ryu控制器的可编程性,实现DDoS洪泛攻击缓解方法。
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)through Research Partnership Program No.RP-21-07-09.
文摘Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techniques in terms of accuracy,precision,and recall.This superiority stems from ACIDS-PELT’s ability to overcome limitations associated with approximation and imprecision in change point detection while offering a more accurate and precise approach to detecting security threats in dynamic cloud environments.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.