By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit...In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a cons...We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic...Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.展开更多
This paper sets up the approximate inertias manifold(AIM) in the nouselfadjoint nonlinear evolutionary equation and Ands AIMs which are explitly dafined in the weally damped forced KdV equation (WDF KdV).
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization...This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.展开更多
The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness propert...The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness properties with respect to the parameters of these delay fractional differential equations are considered.展开更多
In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this meth...In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this method.Here,fractional derivatives are defined in the conformable sense.The obtained traveling wave solutions are expressed by the hyperbolic,trigonometric,exponential and rational functions.Simulations of the obtained solutions are given at the end of the paper.展开更多
In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found...In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found by assuming the conservation of three integrals of motion, i.e. the total ion energy E, the magnetic moment # and toroidal angular momentum Pc, and it is used to calculate expediently the ion orbit loss region. The direct ion orbit losses in the initial velocity space near the plasma edge of EAST with SN (single null) divertor configuration are analyzed systematically. The ion loss regions are obtained by solving the guiding center approximation orbit equation of critical ions with the effect of the radial electric field taken into account. Under the influence of plasma current Ip, the type of ions, the toroidal field Bt and the changes of the loss regions are analyzed and calculated accordingly.展开更多
This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the appr...This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.展开更多
The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation....The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation. The resulting equation is then solved analytically and even exactly in some cases. Numerical simulations are provided for the cases in which there is no exact solution. Travelling wave solutions are also obtained.展开更多
An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for di...An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.展开更多
In this paper, we study the large time asymptotic behavior of solutions to both the Cauchy problem and the exterior problem of the Stokes approximation equations of two dimensional compressible flows.
The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential...The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential equation is converted into ordinary differential equations with the help of fractional complex transform and the modified Riemann-Liouville derivative sense.Applying the generalized Kudryashov method through with symbolic computer maple package,numerous new exact solutions are successfully obtained.All calculations in this study have been established and verified back with the aid of the Maple package program.The executed method is powerful,effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions with the integer and fractional order.展开更多
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m...This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.展开更多
In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ...In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.展开更多
Subthreshold conduction is governed by the potential distribution. We focus on full two-dimensional(2D) analytical modeling in order to evaluate the 2D potential profile within the active area of Fin FET structure.S...Subthreshold conduction is governed by the potential distribution. We focus on full two-dimensional(2D) analytical modeling in order to evaluate the 2D potential profile within the active area of Fin FET structure.Surfaces and interfaces, which are key nanowire elements, are carefully studied. Different structures have different boundary conditions, and therefore different effects on the potential distributions. A range of models in Fin FET are reviewed in this paper. Parabolic approximation and evanescent mode are two different basic math methods to simplify the Poisson's equation. Both superposition method and parabolic approximation are widely used in heavily doped devices. It is helpful to learn performances of MOSFETs with different structures. These two methods achieved improvement to face different structures from heavily doped devices or lightly doped devices to junctionless transistors.展开更多
In this work we establish an existence theorem of regulated solutions for a class of Stieltjes equations which involve generalized fuemann kind of integrals. The general method spplied consists in considering the cont...In this work we establish an existence theorem of regulated solutions for a class of Stieltjes equations which involve generalized fuemann kind of integrals. The general method spplied consists in considering the continuous-time Stieltjes equation as limit of discrete processes. This approach will prove fruitful in the study of the controllability of Stieltjes systems, because it will be possible to get properties on the continuous time equation by transferring properties of the discrete ones.展开更多
文摘By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
文摘In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Supported by National Natural Science Foundation of China(11271305,11161011)Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)
文摘We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
基金Project supported by the National Natural Science Foundation of China (Nos.40175014, 90411006)the Science Foundation of Shanghai Municipal Commission of Science and Technology(No.02DJ14032)
文摘Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.
文摘This paper sets up the approximate inertias manifold(AIM) in the nouselfadjoint nonlinear evolutionary equation and Ands AIMs which are explitly dafined in the weally damped forced KdV equation (WDF KdV).
基金The work of the author has been supported by the Deutache Forschungsgemeinschaft(DFG) under Grant Ho 1846/1-1
文摘This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
文摘The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness properties with respect to the parameters of these delay fractional differential equations are considered.
文摘In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this method.Here,fractional derivatives are defined in the conformable sense.The obtained traveling wave solutions are expressed by the hyperbolic,trigonometric,exponential and rational functions.Simulations of the obtained solutions are given at the end of the paper.
基金supported by National Natural Science Foundation of China(No.10075048)
文摘In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found by assuming the conservation of three integrals of motion, i.e. the total ion energy E, the magnetic moment # and toroidal angular momentum Pc, and it is used to calculate expediently the ion orbit loss region. The direct ion orbit losses in the initial velocity space near the plasma edge of EAST with SN (single null) divertor configuration are analyzed systematically. The ion loss regions are obtained by solving the guiding center approximation orbit equation of critical ions with the effect of the radial electric field taken into account. Under the influence of plasma current Ip, the type of ions, the toroidal field Bt and the changes of the loss regions are analyzed and calculated accordingly.
基金supported by the National Natural Science Foundation of China(Nos.11072141 and11272199)the National Basic Research Program of China(No.2012CB725404)+2 种基金the Shanghai Program for Innovative Research Team in Universitiesthe Research Grants Council of the Hong KongSpecial Administrative Region,China(No.HKU7184/10E)the National Research Foundationof Korea(MEST)(No.NRF-2010-0029446)
文摘This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.
文摘The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation. The resulting equation is then solved analytically and even exactly in some cases. Numerical simulations are provided for the cases in which there is no exact solution. Travelling wave solutions are also obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204097 and 41130418)the China National Major Science and Technology Project (2011ZX05023-005-004)
文摘An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.
基金A The research is supported in part by the National Natural Science Foundation of China (Grant No. 10401012) and The Project Sponsored by the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry.Acknowledgment This is a part of my Ph.D thesis at The Institute of Mathematical Sciences, The Chinese University of Hong Kong. I express my deep gratitude to my graduate advisor, Professor Zhouping Xin, for his guidance and encouragement.
文摘In this paper, we study the large time asymptotic behavior of solutions to both the Cauchy problem and the exterior problem of the Stokes approximation equations of two dimensional compressible flows.
文摘The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential equation is converted into ordinary differential equations with the help of fractional complex transform and the modified Riemann-Liouville derivative sense.Applying the generalized Kudryashov method through with symbolic computer maple package,numerous new exact solutions are successfully obtained.All calculations in this study have been established and verified back with the aid of the Maple package program.The executed method is powerful,effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions with the integer and fractional order.
文摘This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.
文摘In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.
文摘Subthreshold conduction is governed by the potential distribution. We focus on full two-dimensional(2D) analytical modeling in order to evaluate the 2D potential profile within the active area of Fin FET structure.Surfaces and interfaces, which are key nanowire elements, are carefully studied. Different structures have different boundary conditions, and therefore different effects on the potential distributions. A range of models in Fin FET are reviewed in this paper. Parabolic approximation and evanescent mode are two different basic math methods to simplify the Poisson's equation. Both superposition method and parabolic approximation are widely used in heavily doped devices. It is helpful to learn performances of MOSFETs with different structures. These two methods achieved improvement to face different structures from heavily doped devices or lightly doped devices to junctionless transistors.
基金This work was developed at the Institute of Mathematics of the Czech Republic Academy of Sciences atPraha, with financial supp
文摘In this work we establish an existence theorem of regulated solutions for a class of Stieltjes equations which involve generalized fuemann kind of integrals. The general method spplied consists in considering the continuous-time Stieltjes equation as limit of discrete processes. This approach will prove fruitful in the study of the controllability of Stieltjes systems, because it will be possible to get properties on the continuous time equation by transferring properties of the discrete ones.