In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness...In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness, good approximation behavior and relatively less data etc. Several numerical examples are provided to demonstrate the effectiveness and flexibility of the proposed method.展开更多
Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by ...Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.展开更多
In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative i...In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative in space by a fractional derivative in space of order. An implicit finite difference approximation for this equation is presented. The stability and convergence of the finite difference approximation are proved. A fractional-order method of lines is also presented. Finally, some numerical results are given.展开更多
In this paper, a time fractional advection-dispersion equation is considered. From the relationship between the Caputo derivative and the Griinwald derivative, the Caputo derivative is approximated by using the Griinw...In this paper, a time fractional advection-dispersion equation is considered. From the relationship between the Caputo derivative and the Griinwald derivative, the Caputo derivative is approximated by using the Griinwald derivative. An implicit difference approximation for this equation is proposed. We prove that this approximation is unconditionally stable and convergent. Finally, numerical examples are given.展开更多
基金Project supported by the National Natural Science Fbundation of China(No.10271022,No.60373093 and No.60533060).
文摘In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness, good approximation behavior and relatively less data etc. Several numerical examples are provided to demonstrate the effectiveness and flexibility of the proposed method.
文摘Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.
文摘In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative in space by a fractional derivative in space of order. An implicit finite difference approximation for this equation is presented. The stability and convergence of the finite difference approximation are proved. A fractional-order method of lines is also presented. Finally, some numerical results are given.
文摘In this paper, a time fractional advection-dispersion equation is considered. From the relationship between the Caputo derivative and the Griinwald derivative, the Caputo derivative is approximated by using the Griinwald derivative. An implicit difference approximation for this equation is proposed. We prove that this approximation is unconditionally stable and convergent. Finally, numerical examples are given.