A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ...Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.展开更多
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st...This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .展开更多
In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is...In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is that,in the approximate analysis of the ring radome,a unified expression of the incident field on the radome surface is derived with E-plane and H-plane scanning,and the ring is approximated as 30 segments of straight strips.Solving the corresponding 60×60 linear equations yields the electric current distribution along the ring strip.The magnetic current along the complementary slot ring is obtained by duality.Thanks to the fully analytical format of the current distribution,the microwave wireless power-transmission characteristics are efficiently calculated using Munk’s scheme.An example of a slot ring biplanar symmetric hybrid radome is used to verify the accuracy and efficiency of the proposed scheme.The central processing unit(CPU)time is about 690 s using Ansys HFSS software versus 2.82 s for the proposed method.展开更多
In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The requ...In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.展开更多
Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximat...Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.展开更多
Approximate computing is a popularfield for low power consumption that is used in several applications like image processing,video processing,multi-media and data mining.This Approximate computing is majorly performed ...Approximate computing is a popularfield for low power consumption that is used in several applications like image processing,video processing,multi-media and data mining.This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier.The multiplier is the most essen-tial element used for approximate computing where the power consumption is majorly based on its performance.There are several researchers are worked on the approximate multiplier for power reduction for a few decades,but the design of low power approximate multiplier is not so easy.This seems a bigger challenge for digital industries to design an approximate multiplier with low power and minimum error rate with higher accuracy.To overcome these issues,the digital circuits are applied to the Deep Learning(DL)approaches for higher accuracy.In recent times,DL is the method that is used for higher learning and prediction accuracy in severalfields.Therefore,the Long Short-Term Memory(LSTM)is a popular time series DL method is used in this work for approximate computing.To provide an optimal solution,the LSTM is combined with a meta-heuristics Jel-lyfish search optimisation technique to design an input aware deep learning-based approximate multiplier(DLAM).In this work,the jelly optimised LSTM model is used to enhance the error metrics performance of the Approximate multiplier.The optimal hyperparameters of the LSTM model are identified by jelly search opti-misation.Thisfine-tuning is used to obtain an optimal solution to perform an LSTM with higher accuracy.The proposed pre-trained LSTM model is used to generate approximate design libraries for the different truncation levels as a func-tion of area,delay,power and error metrics.The experimental results on an 8-bit multiplier with an image processing application shows that the proposed approx-imate computing multiplier achieved a superior area and power reduction with very good results on error rates.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt...The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.展开更多
To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, f...To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.展开更多
Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data po...Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data points which use a query point as one of their k nearest neighbors. To answer the RNNk of queries efficiently, the properties of the Voronoi cell and the space-dividing regions are applied. The RNNk of the given point can be found without computing its nearest neighbors every time by using the rank Voronoi cell. With the elementary RNNk query result, the candidate data points of reverse nearest neighbors can he further limited by the approximation with sweepline and the partial extension of query region Q. The approximate minimum average distance (AMAD) can be calculated by the approximate RNNk without the restriction of k. Experimental results indicate the efficiency and the effectiveness of the algorithm and the approximate method in three varied data distribution spaces. The approximate query and the calculation method with the high precision and the accurate recall are obtained by filtrating data and pruning the search space.展开更多
This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper ...This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,展开更多
In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames...In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction.展开更多
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金supported by NSFC projects(61960206005,61803211,61871111,62101275,62171127,61971136,and 62001056)Jiangsu NSF project(BK20200820)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX210106)Research Fund of National Mobile Communications Research Laboratory.
文摘Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
文摘This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .
基金supported in part by the National Key Research and Development Program(2021YFF1500100)Key Basic Research of Basic Strengthening Program of the Science and Technology Commission(2020-JCJQ-ZD-068)。
文摘In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is that,in the approximate analysis of the ring radome,a unified expression of the incident field on the radome surface is derived with E-plane and H-plane scanning,and the ring is approximated as 30 segments of straight strips.Solving the corresponding 60×60 linear equations yields the electric current distribution along the ring strip.The magnetic current along the complementary slot ring is obtained by duality.Thanks to the fully analytical format of the current distribution,the microwave wireless power-transmission characteristics are efficiently calculated using Munk’s scheme.An example of a slot ring biplanar symmetric hybrid radome is used to verify the accuracy and efficiency of the proposed scheme.The central processing unit(CPU)time is about 690 s using Ansys HFSS software versus 2.82 s for the proposed method.
基金support of Taif University Researchers Supporting Project No. (TURSP-2020/162),Taif University,Taif,Saudi Arabiafunding this work through research groups program under Grant No.R.G.P.1/195/42.
文摘In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.
文摘Approximate computing is a popularfield for low power consumption that is used in several applications like image processing,video processing,multi-media and data mining.This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier.The multiplier is the most essen-tial element used for approximate computing where the power consumption is majorly based on its performance.There are several researchers are worked on the approximate multiplier for power reduction for a few decades,but the design of low power approximate multiplier is not so easy.This seems a bigger challenge for digital industries to design an approximate multiplier with low power and minimum error rate with higher accuracy.To overcome these issues,the digital circuits are applied to the Deep Learning(DL)approaches for higher accuracy.In recent times,DL is the method that is used for higher learning and prediction accuracy in severalfields.Therefore,the Long Short-Term Memory(LSTM)is a popular time series DL method is used in this work for approximate computing.To provide an optimal solution,the LSTM is combined with a meta-heuristics Jel-lyfish search optimisation technique to design an input aware deep learning-based approximate multiplier(DLAM).In this work,the jelly optimised LSTM model is used to enhance the error metrics performance of the Approximate multiplier.The optimal hyperparameters of the LSTM model are identified by jelly search opti-misation.Thisfine-tuning is used to obtain an optimal solution to perform an LSTM with higher accuracy.The proposed pre-trained LSTM model is used to generate approximate design libraries for the different truncation levels as a func-tion of area,delay,power and error metrics.The experimental results on an 8-bit multiplier with an image processing application shows that the proposed approx-imate computing multiplier achieved a superior area and power reduction with very good results on error rates.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金supported in part by the National Key R&D Program of China (2022ZD0116401,2022ZD0116400)the National Natural Science Foundation of China (62203016,U2241214,T2121002,62373008,61933007)+2 种基金the China Postdoctoral Science Foundation (2021TQ0009)the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
基金The National High Technology Research and Development Program of China (863 Program ) (No. 2011AA110304 )the National Natural Science Foundation of China (No. 50908100)
文摘To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.
基金Supported by the National Natural Science Foundation of China (60673136)the Natural Science Foundation of Heilongjiang Province of China (F200601)~~
文摘Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data points which use a query point as one of their k nearest neighbors. To answer the RNNk of queries efficiently, the properties of the Voronoi cell and the space-dividing regions are applied. The RNNk of the given point can be found without computing its nearest neighbors every time by using the rank Voronoi cell. With the elementary RNNk query result, the candidate data points of reverse nearest neighbors can he further limited by the approximation with sweepline and the partial extension of query region Q. The approximate minimum average distance (AMAD) can be calculated by the approximate RNNk without the restriction of k. Experimental results indicate the efficiency and the effectiveness of the algorithm and the approximate method in three varied data distribution spaces. The approximate query and the calculation method with the high precision and the accurate recall are obtained by filtrating data and pruning the search space.
文摘This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,
文摘In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction.