In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most inte...In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.展开更多
In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence an...In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.展开更多
In this paper, we consider the existence of homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. The classical Ambrosetti–Rabinowitz superlinear condition is improved by a ge...In this paper, we consider the existence of homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. The classical Ambrosetti–Rabinowitz superlinear condition is improved by a general superlinear one. The proof is based on the critical point theory in combination with periodic approximations of solutions.展开更多
文摘In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.
基金supported partially by the Specialized Fund for the Doctoral Program of Higher Eduction (Grant No.20071078001)Key Project of National Natural Science Foundation of China (Grant No. 11031002)+1 种基金Natural Science and Engineering Research Council of Canada (NSERC)Project of Scientific Research Innovation Academic Group for the Education System of Guangzhou City
文摘In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT1226)National Natural Science Foundation of China (Grant Nos. 11171078 and 11031002)the Specialized Fund for the Doctoral Program of Higher Education of China (Grant No. 20114410110002)
文摘In this paper, we consider the existence of homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. The classical Ambrosetti–Rabinowitz superlinear condition is improved by a general superlinear one. The proof is based on the critical point theory in combination with periodic approximations of solutions.