期刊文献+
共找到65,313篇文章
< 1 2 250 >
每页显示 20 50 100
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
1
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Approximately Bi-Similar Symbolic Model for Discretetime Interconnected Switched System
2
作者 Yang Song Yongzhuang Liu Wanqing Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2185-2187,共3页
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s... Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable. 展开更多
关键词 approximate SYMBOLIC CONNECTED
下载PDF
Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning:DTRLpath
3
作者 Shiming Lin Ling Ye +4 位作者 Yijie Zhuang Lingyun Lu Shaoqiu Zheng Chenxi Huang Ng Yin Kwee 《Computers, Materials & Continua》 SCIE EI 2024年第7期299-317,共19页
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi... In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks. 展开更多
关键词 Intelligent agent knowledge graph reasoning REINFORCEMENT transfer learning
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
4
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Challenges Experienced by Nurse Educators in Promoting Acquisition of Clinical Reasoning Skills by the Undergraduate Nursing Students: A Qualitative Exploratory Study
5
作者 Omero. G. Mwale Mukwato-Katowa Patricia Marjorie Kabinga-Makukula 《Open Journal of Nursing》 2024年第8期459-476,共18页
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is... Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively. 展开更多
关键词 ACQUISITION Clinical reasoning Skills Undergraduate Nursing Student Nurse Educator
下载PDF
Assessing the Levels of Clinical Reasoning Skills Using Self-Assessment of Clinical Reflection and Reasoning in Undergraduate Nursing Students: A Descriptive Comparative Study
6
作者 Omero G. Mwale Patricia K. Mukwato Marjorie K. Makukula‡ 《Open Journal of Nursing》 2024年第7期283-297,共15页
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The... Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education. 展开更多
关键词 Clinical Competences Clinical reasoning Skills Undergraduate Nursing Student
下载PDF
The Effect of the Menstrual Cycle on Cognitive Performance: Spatial Reasoning, Visual & Numerical Memory
7
作者 Anusha Asim Rifah Maryam +4 位作者 Zahra Sultan Areej Shahid Fatima Yousaf Ishika Khandelwal Isra Allana 《Journal of Behavioral and Brain Science》 2024年第10期276-296,共21页
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be... The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems. 展开更多
关键词 Menstrual Health Menstrual Cycle MENSTRUATION Mental Health COGNITION Spatial reasoning Visual Memory Numerical Memory
下载PDF
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
8
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
下载PDF
Fully implicational methods for approximate reasoning based on interval-valued fuzzy sets 被引量:4
9
作者 Huawen Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期224-232,共9页
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp... The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT. 展开更多
关键词 approximate reasoning interval-valued fuzzy set interval-valued fuzzy implication fully implicational method re- versibility.
下载PDF
AN APPROXIMATE REASONING METHOD IN DEZERT-SMARANDACHE THEORY 被引量:3
10
作者 Li Xinde Wu Xuejian Sun Jiaming Meng Zhengda 《Journal of Electronics(China)》 2009年第6期738-745,共8页
With the increment of focal elements number in discernment framework,the computation amount in Dezert-Smarandache Theory (DSmT) will exponentially go up. This has been the bottleneck problem to block the wide applicat... With the increment of focal elements number in discernment framework,the computation amount in Dezert-Smarandache Theory (DSmT) will exponentially go up. This has been the bottleneck problem to block the wide application and development of DSmT. Aiming at this difficulty,in this paper,a kind of fast approximate reasoning method in hierarchical DSmT is proposed. Presently,this method is only fit for the case that there are only singletons with assignment in hyper-power set. These singletons in hyper-power set are forced to group through bintree or tri-tree technologies. At the same time,the assignments of singletons in those different groups corresponding to each source are added up respectively,in order to realize the mapping from the refined hyper-power set to the coarsened one. And then,two sources with the coarsened hyper-power set are combined together according to classical DSm Combination rule (DSmC) and Proportional Conflict Redistribution rule No. 5 (PCR5). The fused results in coarsened framework will be saved as the connecting weights between father and children nodes. And then,all assignments of singletons in different groups will be normalized respectively. Tree depth is set,in order to decide the iterative times in hierarchical system. Finally,by comparing new method with old one from different views,the superiority of new one over old one is testified well. 展开更多
关键词 approximate reasoning Information fusion HIERARCHICAL Dezert-Smarandache Theory (DSmT)
下载PDF
Theory of Approximate Reasoning in Two-Valued Predicate Logic Based on the Quasi-truth Degrees 被引量:2
11
作者 秦晓燕 刘军 +2 位作者 徐扬 陈树伟 刘熠 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期23-27,共5页
Based on the theory of the quasi-truth degrees in two-valued predicate logic, some researches on approximate reasoning are studied in this paper. The relation of the pseudo-metric between first-order formulae and the ... Based on the theory of the quasi-truth degrees in two-valued predicate logic, some researches on approximate reasoning are studied in this paper. The relation of the pseudo-metric between first-order formulae and the quasi-truth degrees of first-order formulae is discussed, and it is proved that there is no isolated point in the logic metric space (F, ρ ). Thus the pseudo-metric between first-order formulae is well defined to develop the study about approximate reasoning in the logic metric space (F, ρ ). Then, three different types of approximate reasoning patterns are proposed, and their equivalence under some condition is proved. This work aims at filling in the blanks of approximate reasoning in quantitative predicate logic. 展开更多
关键词 approximate reasoning PSEUDO-METRIC quasi-truth degree predicate logic
下载PDF
Approximate Reasoning in Fuzzy Resolution
12
作者 Banibrata Mondal Swapan Raha 《International Journal of Intelligence Science》 2013年第2期86-98,共13页
Resolution is an useful tool for mechanical theorem proving in modelling the refutation proof procedure, which is mostly used in constructing a “proof” of a “theorem”. An attempt is made to utilize approximate rea... Resolution is an useful tool for mechanical theorem proving in modelling the refutation proof procedure, which is mostly used in constructing a “proof” of a “theorem”. An attempt is made to utilize approximate reasoning methodology in fuzzy resolution. Approximate reasoning is a methodology which can deduce a specific information from general knowledge and specific observation. It is dependent on the form of general knowledge and the corresponding deductive mechanism. In ordinary approximate reasoning, we derive from A→B and by some mechanism. In inverse approximate reasoning, we conclude from A→B and using an altogether different mechanism. An important observation is that similarity is inherent in fuzzy set theory. In approximate reasoning methodology-similarity relation is used in fuzzification while, similarity measure is used in fuzzy inference mechanism. This research proposes that similarity based approximate reasoning-modelling generalised modus ponens/generalised modus tollens—can be used to derive a resolution—like inference pattern in fuzzy logic. The proposal is well-illustrated with artificial examples. 展开更多
关键词 approximate reasoning SIMILARITY INDEX SIMILARITY Based reasoning RESOLUTION PRINCIPLE
下载PDF
Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior 被引量:2
13
作者 Chengyao Ruan Zaichen Zhang +3 位作者 Hao Jiang Jian Dang Liang Wu Hongming Zhang 《China Communications》 SCIE CSCD 2023年第5期57-69,共13页
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ... Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices. 展开更多
关键词 sparse Bayesian learning approximate message passing compressed sensing expectation propagation
下载PDF
A Kind of Approximate Reasoning Principles
14
作者 席铁壮 《Chinese Quarterly Journal of Mathematics》 CSCD 1994年第1期111-112,共2页
In this peper, we reseach the following form of approximate reasoning.Ant 1: (If x1 is A1 and x2 is A2and… and xn is An then y is B) is t1.Ant 2: (x1 is A’1 and x2 is A’2 and… and xn is A’n) is t2.Cons: (y is。B... In this peper, we reseach the following form of approximate reasoning.Ant 1: (If x1 is A1 and x2 is A2and… and xn is An then y is B) is t1.Ant 2: (x1 is A’1 and x2 is A’2 and… and xn is A’n) is t2.Cons: (y is。B’) is ts.First we put forward two reasonable approximate reasoning principles, then, accordingg tO the two reasoning principles we construct a new kind of approximate reasoning methods. The bole idea which the new kind of approximate reasoning methods is that according to the strength p(A1(x1), …, An(xn) )→B (y) which A1(x1),…, An(xn) implicate B(y) and the degree of A’(x) approximates to A(x), we determine the upper limit and B’(y), then take a definite value B’(y) in between the upper limit and the lower limit, and make the reasoning method satisfied the two reasoning principles. 展开更多
关键词 approalmate reasoning language truth value reasoning principle perilal truth expert System
下载PDF
Critical Relation Path Aggregation-Based Industrial Control Component Exploitable Vulnerability Reasoning 被引量:1
15
作者 Zibo Wang Chaobin Huo +5 位作者 Yaofang Zhang Shengtao Cheng Yilu Chen Xiaojie Wei Chao Li Bailing Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2957-2979,共23页
With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecas... With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy. 展开更多
关键词 Path-based reasoning representation learning attention mechanism vulnerability knowledge graph industrial control component
下载PDF
A reasoning diagram based method for fault diagnosis of railway point system 被引量:1
16
作者 Feng Wang Yuan Cao +4 位作者 Clive Roberts Tao Wen Lei Tan Shuai Su Tao Tang 《High-Speed Railway》 2023年第2期110-119,共10页
Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing met... Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing methods assume that sufficient samples of each failure mode are available,which may be unrealistic,especially for those modes of low occurrence frequency but with high risk.To address this issue,this work proposes a novel fault diagnosis method that only requires the power signals generated under normal RPS operations in the training stage.Specifically,the failure modes of RPS are distinguished through constructing a reasoning diagram,whose nodes are either binary logic problems or those that can be decomposed into the problems of the binary logic.Then,an unsupervised method for the signal segmentation and a fault detection method are combined to make decisions for each binary logic problem.Based on the results of decisions,the diagnostic rules are established to identify the failure modes.Finally,the data collected from multiple real-world RPSs are used for validation and the results demonstrate that the proposed method outperforms the benchmark in identifying the faults of RPSs. 展开更多
关键词 Railway point system Fault diagnosis reasoning diagram SEGMENTATION Detection method
下载PDF
Visualization of Approximate Reasoning Systems
17
作者 Zhang Zili(Department of Computer Science, Southwest China Normal University, Chongqing 630715) 《西南师范大学学报(自然科学版)》 CAS CSCD 1995年第4期369-375,共7页
VisualizationofApproximateReasoningSystemsZhangZili(DepartmentofComputerScience,SouthwestChinaNormalUniversi... VisualizationofApproximateReasoningSystemsZhangZili(DepartmentofComputerScience,SouthwestChinaNormalUniversity,Chongqing63071... 展开更多
关键词 近似推理系统 可视化
下载PDF
Local-to-Global Causal Reasoning for Cross-Document Relation Extraction
18
作者 Haoran Wu Xiuyi Chen +3 位作者 Zefa Hu Jing Shi Shuang Xu Bo Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1608-1621,共14页
Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing nois... Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing noisy texts.Previous studies focus on the attention mechanism to construct the connection between different text features through semantic similarity.However,similarity-based methods cannot distinguish valid information from highly similar retrieved documents well.How to design an effective algorithm to implement aggregated reasoning in confusing information with similar features still remains an open issue.To address this problem,we design a novel local-toglobal causal reasoning(LGCR)network for cross-document RE,which enables efficient distinguishing,filtering and global reasoning on complex information from a causal perspective.Specifically,we propose a local causal estimation algorithm to estimate the causal effect,which is the first trial to use the causal reasoning independent of feature similarity to distinguish between confusing and valid information in cross-document RE.Furthermore,based on the causal effect,we propose a causality guided global reasoning algorithm to filter the confusing information and achieve global reasoning.Experimental results under the closed and the open settings of the large-scale dataset Cod RED demonstrate our LGCR network significantly outperforms the state-ofthe-art methods and validate the effectiveness of causal reasoning in confusing information processing. 展开更多
关键词 Causal reasoning cross document graph reasoning relation extraction(RE)
下载PDF
A Comparative Survey of an Approximate Solution Method for Stochastic Delay Differential Equations
19
作者 Emenonye Christian Emenonye Donatus Anonwa 《Applied Mathematics》 2023年第3期196-207,共12页
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st... This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. . 展开更多
关键词 approximate Solution Differential Equations Techniques Stochastic Differential Equation EXISTENCE UNIQUENESS approximate Procedure
下载PDF
An Approximate Analytical Method for a Slot Ring Radome
20
作者 Kang Luo Jin Meng +1 位作者 Jiangfeng Han Danni Zhu 《Engineering》 SCIE EI CAS CSCD 2023年第11期75-82,共8页
In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is... In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is that,in the approximate analysis of the ring radome,a unified expression of the incident field on the radome surface is derived with E-plane and H-plane scanning,and the ring is approximated as 30 segments of straight strips.Solving the corresponding 60×60 linear equations yields the electric current distribution along the ring strip.The magnetic current along the complementary slot ring is obtained by duality.Thanks to the fully analytical format of the current distribution,the microwave wireless power-transmission characteristics are efficiently calculated using Munk’s scheme.An example of a slot ring biplanar symmetric hybrid radome is used to verify the accuracy and efficiency of the proposed scheme.The central processing unit(CPU)time is about 690 s using Ansys HFSS software versus 2.82 s for the proposed method. 展开更多
关键词 approximate analytical RING RADOME Kirchhoff-type circuit
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部