We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the u...We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt...The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.展开更多
采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层...采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层处于不稳定状态,波动较大。随堆积层数的增加,堆积层层高逐渐减小并趋于稳定,堆积层层宽先减小,随后逐渐增大并趋于稳定,层宽在第二个堆积层具有极小值。进一步设计了二次回归旋转组合试验方法,采集的试验数据作为训练样本,基于神经网络算法建立了堆积工艺参数(堆积电流、行走速度、堆积电压)与堆积层尺寸的非线性模型,经测试数据样本验证表明,模型预测精度较高,堆积层尺寸预测最大相对误差小于6.98%。根据堆积层尺寸预测模型,进行了封闭路径与非封闭路径薄壁构件的堆积成形,试验结果表明,该模型能够应用于薄壁构件GMA增材制造自适应分层切片过程。展开更多
文摘We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
基金This paper is a part of the author's series of letures at the Mathematical Institute of the Hungarian Academy of Sciences while visiting Hungary sent by the state Education Committee,the People's Republic of China.
文摘A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金supported in part by the National Key R&D Program of China (2022ZD0116401,2022ZD0116400)the National Natural Science Foundation of China (62203016,U2241214,T2121002,62373008,61933007)+2 种基金the China Postdoctoral Science Foundation (2021TQ0009)the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
文摘采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层处于不稳定状态,波动较大。随堆积层数的增加,堆积层层高逐渐减小并趋于稳定,堆积层层宽先减小,随后逐渐增大并趋于稳定,层宽在第二个堆积层具有极小值。进一步设计了二次回归旋转组合试验方法,采集的试验数据作为训练样本,基于神经网络算法建立了堆积工艺参数(堆积电流、行走速度、堆积电压)与堆积层尺寸的非线性模型,经测试数据样本验证表明,模型预测精度较高,堆积层尺寸预测最大相对误差小于6.98%。根据堆积层尺寸预测模型,进行了封闭路径与非封闭路径薄壁构件的堆积成形,试验结果表明,该模型能够应用于薄壁构件GMA增材制造自适应分层切片过程。