An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small phys...An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.展开更多
In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to ana...In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to analyze the forced vibration of a strong nonlinear system.展开更多
In this paper, the defect of the Two-Time Expansion method is indicated and an improvement of this method is suggested. Certain examples.in which the present method is used, are given. Moreover, the paper shows the eq...In this paper, the defect of the Two-Time Expansion method is indicated and an improvement of this method is suggested. Certain examples.in which the present method is used, are given. Moreover, the paper shows the equivalence of the improved Two-Time Expansion Method and the method of KBM(Kryloy-Bogoliuboy-Mitropolski).展开更多
The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the syst...The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.展开更多
Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices cal...Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices call for an efficient and reliable method to analyze the dynamic response of DE. This remains to be a challenge since the resultant vibration equation of DE, for example, the vibration of a DE balloon considered here is highly nonlinear with higher-order power terms and time-dependent coefficients. Previous efforts toward this goal use largely the numerical integration method with the simple harmonic balance method as a supplement. The numerical integration and the simple harmonic balance method are inefficient for large parametric analysis or with difficulty in improving the solution accuracy. To overcome the weakness of these two methods,we describe formulations of the incremental harmonic balance(IHB) method for periodic forced solutions of such a unique system. Combined with an arc-length continuation technique, the proposed strategy can capture the whole solution branches, both stable and unstable, automatically with any desired accuracy.展开更多
Based on the homotopy analysis method, a general analytic technique for strongly nonlinear problems, a Maple package of automated derivation (ADHO) for periodic nonlinear oscillation systems is presented. This Maple...Based on the homotopy analysis method, a general analytic technique for strongly nonlinear problems, a Maple package of automated derivation (ADHO) for periodic nonlinear oscillation systems is presented. This Maple package is valid for periodic oscillation systems in rather general, and can automatically deliver the accurate approximations of the frequency co and the mean of motion δof a nonlinear periodic oscillator. Based on the homotopy analysis method which is valid even for highly nonlinear problems, this Maple package can give accurate approximate expressions even for nonlinear oscillation systems with strong nonlinearity. Besides, the package is user-friendly: One just needs to input a governing equation and initial conditions, and then gets satisfied analytic approximations in few seconds. Several different types of examples are given in this paper to illustrate the validity of this Maple package. Such kind of package provides us a helpful and easy-to-use tool in science and engineering to analyze periodic of this Maple package from the is published publicly. nonlinear oscillations. And it is free address http://numericaltank.sjtu to download the electronic version edu.cn/sjliao.htm once the paper展开更多
This paper aims to investigate nonlinear oscillations of an elevator cable in a drum drive.The governing equation of motion of the objective system is developed by virtue of Lagrangian’s method.A complicated term is ...This paper aims to investigate nonlinear oscillations of an elevator cable in a drum drive.The governing equation of motion of the objective system is developed by virtue of Lagrangian’s method.A complicated term is broached in the governing equation of the motion of the system owing to existence of multiplication of a quadratic function of velocity with a sinusoidal function of displacement in the kinetic energy of the system.The obtained equation is an example of a well-known category of nonlinear oscillators,namely,non-natural systems.Due to the complex terms in the governing equation,perturbation methods cannot directly extract any closed form expressions for the natural frequency.Unavoidably,different non-perturbative approaches are employed to solve the problem and to elicit a closed-form expression for the natural frequency.Energy balance method,modified energy balance method and variational approach are utilized for frequency analyzing of the system.Frequencyamplitude relationships are analytically obtained for nonlinear vibration of the elevator’s drum.In order to examine accuracy of the obtained results,exact solutions are numerically obtained and then compared with those obtained from approximate closed-form solutions for several cases.In a parametric study for different nonlinear parameters,variation of the natural frequencies against the initial amplitude is investigated.Accuracy of the three different approaches is then discussed for both small and large amplitudes of the oscillations.展开更多
In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3&l...In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3</sup>. By introducing the auxiliary linear operator and the initial guess of solution, the homotopy analysis solving is set up. By choosing the suitable convergence-control parameter, the accurate high-order approximations of solution and frequency for the whole range of initial amplitudes can easily be obtained. Comparison of the results obtained using this method with those obtained by different methods reveals that the former is more accurate, effective and convenient for these types of nonlinear oscillators.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The gene...A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.展开更多
The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation usin...The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method.展开更多
The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed b...The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
In this paper,the stability and bifurcation analysis of symmetrical and asymmetrical micro-rotating shafts are investigated when the rotational speed is in the vicinity of the critical speed.With the help of Hamilton&...In this paper,the stability and bifurcation analysis of symmetrical and asymmetrical micro-rotating shafts are investigated when the rotational speed is in the vicinity of the critical speed.With the help of Hamilton's principle,nonlinear equations of motion are derived based on non-classical theories such as the strain gradient theory.In the dynamic modeling,the geometric nonlinearities due to strains,and strain gradients are considered.The bifurcations and steady state solution are compared between the classical theory and the non-classical theories.It is observed that using a non-classical theory has considerable effect in the steady-state response and bifurcations of the system.As a result,under the classical theory,the symmetrical shaft becomes completely stable in the least damping coefficient,while the asymmetrical shaft becomes completely stable in the highest damping coefficient.Under the modified strain gradient theory,the symmetrical shaft becomes completely stable in the least total eccentricity,and under the classical theory the asymmetrical shaft becomes completely stable in the highest total eccentricity.Also,it is shown that by increasing the ratio of the radius of gyration per length scale parameter,the results of the non-classical theory approach those of the classical theory.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has ...Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has high accuracy are obtained. The method of this paper is different from the known L-P methods.展开更多
This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained succe...This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.展开更多
In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via V...In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative examples reveal that this method is very effective and convenient for solving nonlinear differential equations. Comparison of the obtained results with those of the exact solution, reveals that homotopy perturbation method leads to accurate solutions.展开更多
In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for th...In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for the nonlinear problems. In comparison with the exact solution, the results show that these methods are very convenient for solving nonlinear equations and also can be used for strong nonlinear oscillators.展开更多
文摘An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.
基金The project partly supported by the Foundation of Zhongshan University Advanced Research Center
文摘In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to analyze the forced vibration of a strong nonlinear system.
文摘In this paper, the defect of the Two-Time Expansion method is indicated and an improvement of this method is suggested. Certain examples.in which the present method is used, are given. Moreover, the paper shows the equivalence of the improved Two-Time Expansion Method and the method of KBM(Kryloy-Bogoliuboy-Mitropolski).
文摘The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.
基金the National Natural Science Foundation of China(Nos.11702215 and11972277)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2017JQ5062 and 2018JQ1029)。
文摘Dielectric elastomer(DE) is suitable in soft transducers for broad applications,among which many are subjected to dynamic loadings, either mechanical or electrical or both. The tuning behaviors of these DE devices call for an efficient and reliable method to analyze the dynamic response of DE. This remains to be a challenge since the resultant vibration equation of DE, for example, the vibration of a DE balloon considered here is highly nonlinear with higher-order power terms and time-dependent coefficients. Previous efforts toward this goal use largely the numerical integration method with the simple harmonic balance method as a supplement. The numerical integration and the simple harmonic balance method are inefficient for large parametric analysis or with difficulty in improving the solution accuracy. To overcome the weakness of these two methods,we describe formulations of the incremental harmonic balance(IHB) method for periodic forced solutions of such a unique system. Combined with an arc-length continuation technique, the proposed strategy can capture the whole solution branches, both stable and unstable, automatically with any desired accuracy.
基金supported by the National Science Foundation of China under Grant No.11071274
文摘Based on the homotopy analysis method, a general analytic technique for strongly nonlinear problems, a Maple package of automated derivation (ADHO) for periodic nonlinear oscillation systems is presented. This Maple package is valid for periodic oscillation systems in rather general, and can automatically deliver the accurate approximations of the frequency co and the mean of motion δof a nonlinear periodic oscillator. Based on the homotopy analysis method which is valid even for highly nonlinear problems, this Maple package can give accurate approximate expressions even for nonlinear oscillation systems with strong nonlinearity. Besides, the package is user-friendly: One just needs to input a governing equation and initial conditions, and then gets satisfied analytic approximations in few seconds. Several different types of examples are given in this paper to illustrate the validity of this Maple package. Such kind of package provides us a helpful and easy-to-use tool in science and engineering to analyze periodic of this Maple package from the is published publicly. nonlinear oscillations. And it is free address http://numericaltank.sjtu to download the electronic version edu.cn/sjliao.htm once the paper
文摘This paper aims to investigate nonlinear oscillations of an elevator cable in a drum drive.The governing equation of motion of the objective system is developed by virtue of Lagrangian’s method.A complicated term is broached in the governing equation of the motion of the system owing to existence of multiplication of a quadratic function of velocity with a sinusoidal function of displacement in the kinetic energy of the system.The obtained equation is an example of a well-known category of nonlinear oscillators,namely,non-natural systems.Due to the complex terms in the governing equation,perturbation methods cannot directly extract any closed form expressions for the natural frequency.Unavoidably,different non-perturbative approaches are employed to solve the problem and to elicit a closed-form expression for the natural frequency.Energy balance method,modified energy balance method and variational approach are utilized for frequency analyzing of the system.Frequencyamplitude relationships are analytically obtained for nonlinear vibration of the elevator’s drum.In order to examine accuracy of the obtained results,exact solutions are numerically obtained and then compared with those obtained from approximate closed-form solutions for several cases.In a parametric study for different nonlinear parameters,variation of the natural frequencies against the initial amplitude is investigated.Accuracy of the three different approaches is then discussed for both small and large amplitudes of the oscillations.
文摘In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3</sup>. By introducing the auxiliary linear operator and the initial guess of solution, the homotopy analysis solving is set up. By choosing the suitable convergence-control parameter, the accurate high-order approximations of solution and frequency for the whole range of initial amplitudes can easily be obtained. Comparison of the results obtained using this method with those obtained by different methods reveals that the former is more accurate, effective and convenient for these types of nonlinear oscillators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
基金supported by the National Natural Science Foundation of China (10672193)Sun Yat-sen University (Fu Lan Scholarship)the University of Hong Kong (CRGC grant).
文摘A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11071205 and 11101349), the “Strate- gic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues” of the Chinese Academy of Sciences, China (Grant No. XDA01020304), the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042).
文摘The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method.
文摘The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
文摘In this paper,the stability and bifurcation analysis of symmetrical and asymmetrical micro-rotating shafts are investigated when the rotational speed is in the vicinity of the critical speed.With the help of Hamilton's principle,nonlinear equations of motion are derived based on non-classical theories such as the strain gradient theory.In the dynamic modeling,the geometric nonlinearities due to strains,and strain gradients are considered.The bifurcations and steady state solution are compared between the classical theory and the non-classical theories.It is observed that using a non-classical theory has considerable effect in the steady-state response and bifurcations of the system.As a result,under the classical theory,the symmetrical shaft becomes completely stable in the least damping coefficient,while the asymmetrical shaft becomes completely stable in the highest damping coefficient.Under the modified strain gradient theory,the symmetrical shaft becomes completely stable in the least total eccentricity,and under the classical theory the asymmetrical shaft becomes completely stable in the highest total eccentricity.Also,it is shown that by increasing the ratio of the radius of gyration per length scale parameter,the results of the non-classical theory approach those of the classical theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
文摘Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has high accuracy are obtained. The method of this paper is different from the known L-P methods.
基金supported by the National Natural Science Foundation of China (Grant Nos.41105063 and 61070041)
文摘This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.
文摘In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative examples reveal that this method is very effective and convenient for solving nonlinear differential equations. Comparison of the obtained results with those of the exact solution, reveals that homotopy perturbation method leads to accurate solutions.
文摘In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for the nonlinear problems. In comparison with the exact solution, the results show that these methods are very convenient for solving nonlinear equations and also can be used for strong nonlinear oscillators.