Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dy...Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.展开更多
With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco...With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.展开更多
Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the product...Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO2flux in the DP was(0.75±0.12)mmol/(m^2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m^2·hr)(p0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO2in winter.Mean CH4and N2O emissions were significantly higher in the DP compared to those in the UDP(CH4=(0.66±0.31)vs.(0.07±0.06)mmol/(m^2·hr)and N2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m^2·hr))(p〈0.01),suggesting that drainage would also significantly enhance CH4and N2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p〈0.01),with values of739.18 and 26.46 mg CO2-eq/(m^2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.展开更多
A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were act...A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.展开更多
The establishment of water circulation aquaculture system realized the hi- erarchical use of nitrogen, phosphorus and other eutrophic substances in aquaculture wastewater and the recirculation use of water resource. H...The establishment of water circulation aquaculture system realized the hi- erarchical use of nitrogen, phosphorus and other eutrophic substances in aquaculture wastewater and the recirculation use of water resource. However, no research has been reported on the detailed calculation of the relationship between the area of aquaculture pond and purification pond. In this study, referring to the absorption ability of aquatic plants to pollutants in aquaculture wastewater and pollutant generation and discharge coefficient in aquaculture pond, based on the general rules of water quality management in freshwater aquaculture system, a calculation mode was es- tablished to investigate the relationship between the area of aquaculture pond and purification pond in freshwater recirculation aquaculture system, which was feasible to explain related cases and would provide theoretical basis to reduce the economic costs in the construction of water circulation aquaculture system and realize the bal- ance between the ecological benefits and the economic benefits.展开更多
With the rapid development of aquaculture in lakes and reservoirs, its negative effects on water quality and aquatic organisms are clearly emerging. Toward a better understanding of these effects, chemical and biologi...With the rapid development of aquaculture in lakes and reservoirs, its negative effects on water quality and aquatic organisms are clearly emerging. Toward a better understanding of these effects, chemical and biological monitoring was conducted in the Fangbian Reservoir to study the relationship between aquaculture and eutrophication. As a domestic water supply source, this reservoir has reached the mesotrophic level. The concentrations of total nitrogen (TN) and total phosphorus (TP) in the Fangbian Reservoir have frequently exceeded the prescriptive level according to the Environmental Quality Standardgfor SurJace Water (GB3838-2002). Pond and fence aquaculture feeding is the main cause of high levels of nitrogen and phosphorus, accounting for nearly half of the total pollution, and causing the reservoir environmental capacity to be exceeded. The amounts of nitrogen and phosphorus that went directly to the reservoir through the residual bait and fish droppings in fence aquaculture were 42 768 kg per year and 10 856 kg per year respectively, from 2007 to 2009. About 2 913 kg of nitrogen and 450 kg of phosphorus were imported to the reservoir through the exchange of water from the culturing ponds at the same time. Therefore, controlling the aquaculture scale and promoting eco-aquaculture are key measures for lessening the eutrophication degree and improving the water quality.展开更多
Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the fu...Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the future.For this reason,this paper reviewed the characteristics of pond aquaculture tail water,the sources of pollutants in intensive aquaculture tail water,the important parameters in the water body that affect the growth of cultured organisms,and the water treatment methods in the process of aquaculture,and prospected from the technical level and industrial policy level,hoping to accumulate data for promoting the green development of aquaculture and cleaner production.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
[Objective] This study aimed to make the effluent of constructed wetlands in a pond recirculating aquaculture system satisfy aquaculture requirements. [Method] A 150 m long, 0.5 m wide and 0.6 m deep ecological ditch ...[Objective] This study aimed to make the effluent of constructed wetlands in a pond recirculating aquaculture system satisfy aquaculture requirements. [Method] A 150 m long, 0.5 m wide and 0.6 m deep ecological ditch was constructed on the basis of the periphyton reactor theory, to investigate the reoxygenation and deep purification effect of the ecological ditch on the effluent of constructed wetlands. [Result] Experimental results showed that the level of dissolved oxygen (DO) in the effluent of constructed wetlands increased to a range of 4.41-7.91 mg/L and pH val- ue increased significantly by flowing though the ecological ditch (P〈0.05). DO level in the water of ecological ditch increased linearly with the increasing length of the ecological ditch within the range of 150 m (P〈0.05). The ecological ditch showed further removal effect on NH4+-N, IMn and PO4^3 -P in the effluent of the constructed wetlands, with the removal rate of 19.46%, 13.38% and 31.09%, respectively. The total coliform group was also eliminated with the removal rate ranging between 12.5% and 78.13%. [Conclusion] The ecological ditch based on periphyton reactor could improve DO level and further reduce N and P contents in the effluent of the constructed wetlands, which could be used as a matching water-reuse system of constructed wetlands. Key words Water quality; Purification; Dissolved oxygen; Periphyton; Pond aquaculture展开更多
Microplastic pollution has become an increasingly important environmental issue worldwide in recent years because of its ubiquitous presence in different environmental media and its potential to affect the health of o...Microplastic pollution has become an increasingly important environmental issue worldwide in recent years because of its ubiquitous presence in different environmental media and its potential to affect the health of organisms and ecosystems.Aquaculture contributes significantly to the world's food production and nutritional supply,especially in developing countries.Widespread occurrence of microplastics in aquaculture systems has raised great concern regarding aquaculture production and food safety issues of aquaculture products.China is a world leader in aquaculture production,with freshwater aquaculture accounting for 59.1%of total aquaculture production of the world in 2020.Therefore,this review mainly focuses on recent research progress related to microplastic pollution in freshwater aquaculture systems in China.Results from the literature show that microplastics are present in freshwater aquaculture systems at abundances comparable to natural waterbodies in China.Microplastics can be ingested and remain in the body of aquaculture products.Exposure to microplastics can adversely affect the health of aquatic organisms and aquatic ecosystem functions.However,risks of microplastics in real world environment remain uncertain.Consumption of freshwater aquaculture products is not a major pathway for human exposure to microplastics.To provide scientific guidance for governmental decision-making and pollution control,future work should focus on progress in toxicological methodology and understanding the impacts of microplastics at community and ecosystem levels.展开更多
The storage of inorganic carbon in estuarine wetlands is of great significance for mitigating global warming. The Dagu River estuary and Yanghe River estuary of Jiaozhou Bay were selected as sampling areas, and data a...The storage of inorganic carbon in estuarine wetlands is of great significance for mitigating global warming. The Dagu River estuary and Yanghe River estuary of Jiaozhou Bay were selected as sampling areas, and data analysis was carried out by Duncan method to explore the distribution characteristics and influencing factors of soil inorganic carbon(SIC) reserves. The results showed that increasing distance from the estuary led to higher reserves in the mudflat along the coastal zone. The scouring action of seawater bodies was the main factor driving this distribution. In the vertical section, the SIC reserves in 40–60 cm depth were relatively high, accounting for 34.11% of the 0–60 cm soil depth, and resulting from the transport of water and salt in seawater. In the river flat along the vertical coastal zone, the SIC reserves first decreased and then increased with increasing distance from the sea, and the SIC reserves in 0–20 cm depth were relatively high in the vertical section, accounting for 38.18% of the 0–60 cm soil depth. These reserves were affected by synergetic factors such as oceanic factors and anthropogenic activities. The invasion of Spartina alterniflora decreased the SIC reserves of wetlands, mainly due to its root transformation and the differences of growth characteristics and years being the main reasons for the observed decreases. Aquaculture activities changed the physical and chemical properties of the soil in aquaculture ponds, and consequently changed the distribution of SIC reserves.展开更多
基金Under the auspices of National Program on Key Basic Research Project(No.2013CB430401)
文摘Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.
基金Supported by National Modern Agricultural Technology System(CARS-46)NationalSci-tech Support Plan(2012BAD25B05,2012BAD25B01)National Department PublicBenefit Research Foundation(201203083)~~
文摘With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.
基金supported by the National Science Foundation of China (Nos. 41671088 and 41371127)the Program for Innovative Research Team of Fujian Normal University (No. IRTL1205)+2 种基金the Natural Science Foundation of Fujian Province, China (No. 2014J05046)the Study-Abroad Grant Project for Graduates of the School of Geographical Sciences, (No. GY201601)the Graduated Student Science and Technology Innovation Project of the School of Geographical Science,Fujian Normal University (No. GY201601)
文摘Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO2flux in the DP was(0.75±0.12)mmol/(m^2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m^2·hr)(p0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO2in winter.Mean CH4and N2O emissions were significantly higher in the DP compared to those in the UDP(CH4=(0.66±0.31)vs.(0.07±0.06)mmol/(m^2·hr)and N2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m^2·hr))(p〈0.01),suggesting that drainage would also significantly enhance CH4and N2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p〈0.01),with values of739.18 and 26.46 mg CO2-eq/(m^2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.
基金Supported by National Natural Science Foundation of China (40801227)Open Foundation of Marine and Estuarine Fisheries Resources of Ministry of Agriculture and the Key Laboratory of Ecology (Open-2-04-09)~~
文摘A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.
基金Supported by Special Fund for the Construction of Modern Agricultural Industry Technology System(CARS-46)Special Fund for Basic Research and Operating Expenses of Central-level Research Institutes(2007JBFA03)~~
文摘The establishment of water circulation aquaculture system realized the hi- erarchical use of nitrogen, phosphorus and other eutrophic substances in aquaculture wastewater and the recirculation use of water resource. However, no research has been reported on the detailed calculation of the relationship between the area of aquaculture pond and purification pond. In this study, referring to the absorption ability of aquatic plants to pollutants in aquaculture wastewater and pollutant generation and discharge coefficient in aquaculture pond, based on the general rules of water quality management in freshwater aquaculture system, a calculation mode was es- tablished to investigate the relationship between the area of aquaculture pond and purification pond in freshwater recirculation aquaculture system, which was feasible to explain related cases and would provide theoretical basis to reduce the economic costs in the construction of water circulation aquaculture system and realize the bal- ance between the ecological benefits and the economic benefits.
文摘With the rapid development of aquaculture in lakes and reservoirs, its negative effects on water quality and aquatic organisms are clearly emerging. Toward a better understanding of these effects, chemical and biological monitoring was conducted in the Fangbian Reservoir to study the relationship between aquaculture and eutrophication. As a domestic water supply source, this reservoir has reached the mesotrophic level. The concentrations of total nitrogen (TN) and total phosphorus (TP) in the Fangbian Reservoir have frequently exceeded the prescriptive level according to the Environmental Quality Standardgfor SurJace Water (GB3838-2002). Pond and fence aquaculture feeding is the main cause of high levels of nitrogen and phosphorus, accounting for nearly half of the total pollution, and causing the reservoir environmental capacity to be exceeded. The amounts of nitrogen and phosphorus that went directly to the reservoir through the residual bait and fish droppings in fence aquaculture were 42 768 kg per year and 10 856 kg per year respectively, from 2007 to 2009. About 2 913 kg of nitrogen and 450 kg of phosphorus were imported to the reservoir through the exchange of water from the culturing ponds at the same time. Therefore, controlling the aquaculture scale and promoting eco-aquaculture are key measures for lessening the eutrophication degree and improving the water quality.
基金Supported by China Agriculture Research System of MOF and MARA(CARS-46)Project of Kunshan Yangcheng Lake Crab Industrial Research Institute.
文摘Carrying out the treatment of aquaculture tail water and realizing the discharge and recycling of the aquaculture tail water are the inevitable trend in the development of the fishery industry at present and in the future.For this reason,this paper reviewed the characteristics of pond aquaculture tail water,the sources of pollutants in intensive aquaculture tail water,the important parameters in the water body that affect the growth of cultured organisms,and the water treatment methods in the process of aquaculture,and prospected from the technical level and industrial policy level,hoping to accumulate data for promoting the green development of aquaculture and cleaner production.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System (CARS-46)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAD25B05)Special Fund for Agro-scientific Research in the Public Interest(201203083)~~
文摘[Objective] This study aimed to make the effluent of constructed wetlands in a pond recirculating aquaculture system satisfy aquaculture requirements. [Method] A 150 m long, 0.5 m wide and 0.6 m deep ecological ditch was constructed on the basis of the periphyton reactor theory, to investigate the reoxygenation and deep purification effect of the ecological ditch on the effluent of constructed wetlands. [Result] Experimental results showed that the level of dissolved oxygen (DO) in the effluent of constructed wetlands increased to a range of 4.41-7.91 mg/L and pH val- ue increased significantly by flowing though the ecological ditch (P〈0.05). DO level in the water of ecological ditch increased linearly with the increasing length of the ecological ditch within the range of 150 m (P〈0.05). The ecological ditch showed further removal effect on NH4+-N, IMn and PO4^3 -P in the effluent of the constructed wetlands, with the removal rate of 19.46%, 13.38% and 31.09%, respectively. The total coliform group was also eliminated with the removal rate ranging between 12.5% and 78.13%. [Conclusion] The ecological ditch based on periphyton reactor could improve DO level and further reduce N and P contents in the effluent of the constructed wetlands, which could be used as a matching water-reuse system of constructed wetlands. Key words Water quality; Purification; Dissolved oxygen; Periphyton; Pond aquaculture
基金supported by the National Key Research and Development Program of China(2018YFD0900701 and 2020YFD0900301).
文摘Microplastic pollution has become an increasingly important environmental issue worldwide in recent years because of its ubiquitous presence in different environmental media and its potential to affect the health of organisms and ecosystems.Aquaculture contributes significantly to the world's food production and nutritional supply,especially in developing countries.Widespread occurrence of microplastics in aquaculture systems has raised great concern regarding aquaculture production and food safety issues of aquaculture products.China is a world leader in aquaculture production,with freshwater aquaculture accounting for 59.1%of total aquaculture production of the world in 2020.Therefore,this review mainly focuses on recent research progress related to microplastic pollution in freshwater aquaculture systems in China.Results from the literature show that microplastics are present in freshwater aquaculture systems at abundances comparable to natural waterbodies in China.Microplastics can be ingested and remain in the body of aquaculture products.Exposure to microplastics can adversely affect the health of aquatic organisms and aquatic ecosystem functions.However,risks of microplastics in real world environment remain uncertain.Consumption of freshwater aquaculture products is not a major pathway for human exposure to microplastics.To provide scientific guidance for governmental decision-making and pollution control,future work should focus on progress in toxicological methodology and understanding the impacts of microplastics at community and ecosystem levels.
基金National Natural Science Foundation of China(41771098)
文摘The storage of inorganic carbon in estuarine wetlands is of great significance for mitigating global warming. The Dagu River estuary and Yanghe River estuary of Jiaozhou Bay were selected as sampling areas, and data analysis was carried out by Duncan method to explore the distribution characteristics and influencing factors of soil inorganic carbon(SIC) reserves. The results showed that increasing distance from the estuary led to higher reserves in the mudflat along the coastal zone. The scouring action of seawater bodies was the main factor driving this distribution. In the vertical section, the SIC reserves in 40–60 cm depth were relatively high, accounting for 34.11% of the 0–60 cm soil depth, and resulting from the transport of water and salt in seawater. In the river flat along the vertical coastal zone, the SIC reserves first decreased and then increased with increasing distance from the sea, and the SIC reserves in 0–20 cm depth were relatively high in the vertical section, accounting for 38.18% of the 0–60 cm soil depth. These reserves were affected by synergetic factors such as oceanic factors and anthropogenic activities. The invasion of Spartina alterniflora decreased the SIC reserves of wetlands, mainly due to its root transformation and the differences of growth characteristics and years being the main reasons for the observed decreases. Aquaculture activities changed the physical and chemical properties of the soil in aquaculture ponds, and consequently changed the distribution of SIC reserves.