Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance.Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorl...Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance.Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood.Here,we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions.To test this hypothesis,we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden.We found that although there were a few significant differences,most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants.Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70%relative water content.Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point.In addition,there was a trade-off between hydraulic efficiency and the construction cost of a flower across species.Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern.These results suggest a convergent flower economics design across terrestrial and aquatic plants,providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.展开更多
The study aimed to evaluate the ability of some terrestrial and aquatic plants for wastewater purification.Aquatic plants can remove pollutants from wastewater by consuming and accumulating various contaminants in diff...The study aimed to evaluate the ability of some terrestrial and aquatic plants for wastewater purification.Aquatic plants can remove pollutants from wastewater by consuming and accumulating various contaminants in different parts of plants.Different aquatic and terrestrial plants(Rosa sinensis,Typha latifolia,Ocimm bacilicum,Azolla pinnata,and Salvinia molesta)which have the ability to decrease water pollution were utilized in this study.The capability offive different species of plants was investigated by measuring chemical oxygen demand(COD),biological oxygen demand(BOD),electrical conductivity(EC),total dissolved solids(TDS),and pH of the medium.In this research,some aquatic and terrestrial plants were transplanted in wastewater plastic pots containing domestic wastewater with different ratios of 50%and 100%.Then,after 30 days,the physiological and biochemical parameters of plants were calculated to observe the effect of wastewater on plants.Results revealed higher chlorophyll and carotenoids in typha plants treated with 100%wastewater.The highest percentage of elimination in BOD(65%),COD(27%),TDS(72%),EC(83%),and pH(6.8%)was noted with the use of typha and azolla.Intriguingly,total soluble sugars,total free amino acids,and total proteins were found maximum in the hibiscus plant as compared to the other plants under 100%and 50%domestic wastewater treatment,while typha and ocimum showed lower values of these parameters irrespective of wastewater treatments.Moreover,the COD,BOD,TDS,EC,and pH trend was higher in 100%wastewater as compared to 50%wastewater.Taking into account the accumulation capacity of the tested plants especially typha can be efficiently used for the treatment of domestic wastewater.展开更多
[Objective] The aim was to study effects of aquatic plants on resuspen- sion of sediment in Lake Taihu. [Method] New resuspension simulator was used in the research. Elodea nuttalli, submerged plant, and Phragmites au...[Objective] The aim was to study effects of aquatic plants on resuspen- sion of sediment in Lake Taihu. [Method] New resuspension simulator was used in the research. Elodea nuttalli, submerged plant, and Phragmites australis, emergent aquatic plant, were grown in substrate sludge with varied planting density set. Study of simulation experiment on the feature of sediment resuspension was carried on under shearing stress of 0.2-0.5 N/m2 and agitation of 1-30 min. [Result] Aquatic plant growing would effectively reduce seston concentration in water. Concentrations of final Suspended Particulate Matter (SPM) in experimental groups and control groups were as follows: water without plant〉coverage of 30% of Elodea nuttalli〉cov- erage of 60% of Elodea nuttalli〉Phragmites australis with concentration of 50 stock/m2〉 coverage of 90% of Elodea nuttalli〉Phragmites australis with concentration of 80 stock/m2〉Phragmites australis with concentration of 150 stock/m2; SPM concentration showed a tendency from increasing to stable with change of stirring time under dif- ferent shearing stresses: SPM concentration was of severe change at early stage in barrel without aquatic plant while change of SPM concentration in barrel with aquatic plant was quite mild and grew smaller with concentration increasing; SPM concentration was reduced much more if Phragmites australis planted compared with that of Elodea nuttalli; under different shearing stresses, reduction of SPM concen- tration by increase of Phragmites australis area was much more than by increase of Elodea nuttalli area. [Conclusion] It would provide powerful scientific reference for control on aquatic environment through comprehensive research on the feature of sediment resuspension.展开更多
[Objective] The aim was to compare the water quality purifying effect of five kinds of aquatic plants.[Method] Model of surface flow wetlands was constructed in the river bank of Jialu River in Zhengzhou City,and five...[Objective] The aim was to compare the water quality purifying effect of five kinds of aquatic plants.[Method] Model of surface flow wetlands was constructed in the river bank of Jialu River in Zhengzhou City,and five kinds of aquatic plants which could grow normally in winter were selected and introduced for screening experiment of aquatic plants.[Result] Five kinds of plants were growing well,and they showed strong cold resistance.However,there were some differences on water quality purifying ability among five kinds of aquatic plants,in which Oenanthe javanica and Elodea canadensis performed better on removing the TN,the removal rate was 44% and 41% respectively; Iris sibirica and O.javanica showed better performance on the removal of TP,the removal rate was 41% and 37% respectively; there was little difference on the removal effect on NH4^+-N among five kinds of plants,in which E.Canadensis performed best with the removal rate of 73%,followed by O.javanica (the removal rate was 71%),and the removal rate of I.sibirica,Rumex acetosa and Potamogeton crispus were 70%; there was no significant purification effect of five kinds of plants on CODCr,in which I.sibirica and R.acetosa performed better,and the removal rate was 14% and 13% respectively.[Conclusion] The emerging plants and submerged plants hydrophytes could be used to construct floating aquatic macrophyte-based treatment system (FAMS) in wetland vegetation allocation to improve the purification effect of wetlands of North China in winter.展开更多
An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata ...An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara were constructed in mesocosm aquaria. Mesocosms were dosed weekly with different P loads (0 μg/L/Week and 100 μg/L/Week) for 17 weeks. Total P (TP), total soluble P (TSP), and soluble reactive P (SRP) concentrations in the waters of mesocosms added with P were significantly higher as opposed to the unenriched control mesocosms. The biomass of the attached periphyton and the cover of floating periphyton remained abundant in P-unenriched control mesocosms throughout the test period with a TP, TSP, and SRP concentration ranging of 0.021 - 0.049 mg/L, 0.004 - 0.024 mg/L, and 0.003 - 0.018 mg/L, respectively. P addition caused the decline of attached periphyton biomass to a low level and loss of floating periphyton. Results indicate that P enrichment in an aquatic ecosystem dominated by submersed plants could reduce attached periphyton biomass and eliminate floating periphyton. The research would be useful to maintain periphyton by reducing excessive P in aquatic ecosystem dominated by submersed plants.展开更多
The aim for this present study was to evaluate the antioxidant potential of aqueous extracts (AE), hydro-ethanolic extracts (HE) and ethanolic extracts (EE) obtained from an aquatic plant (<em>L. schlechteri<...The aim for this present study was to evaluate the antioxidant potential of aqueous extracts (AE), hydro-ethanolic extracts (HE) and ethanolic extracts (EE) obtained from an aquatic plant (<em>L. schlechteri</em>) using a simple and fast method that is the CCM. This method revealed the presence of phenolics and flavonoids at different levels but with higher antioxidant activity in EE compared to AE. Among the two families of antioxidants evaluated, the phenolic compounds were found to be higher on the EE (5.85 mgEAG/MS) followed by the HE (5.06 mgEAG/MS) and less and less important on the AE (3.661 mgEAG/MS). While the less significantly elevated flavonoids showed values of 1.146 mgECa/MS for EE, 0.406 mgECa/MS for HE et 0.181 mgECa/MS for AE. However, the anti-free radical activity was also evaluated. Unlike the antioxidant activity, the ant-free radical activity with a greater IC50 was observed on AE with a rate of 66.66 mg/mL, then less on the hydro-ethanolic and ethanolic extracts, respectively at levels of 26.15 mg/mL et 19.18 mg/mL.展开更多
[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of...[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.展开更多
The suspended and dissolved waste in the incoming storm water of wetlands largely depends on the adjacent land use which can influence the quality of the water body. The micro- and macro-floral population of a wetland...The suspended and dissolved waste in the incoming storm water of wetlands largely depends on the adjacent land use which can influence the quality of the water body. The micro- and macro-floral population of a wetland can absorb, convert, transform and release different organic or inorganic elements, which can also change or impact the overall quality of the wetland water. The present study investigates the influence of the land use and the plant species in the waterbed on the water quality of a high-altitude, sub-tropical wetland in India. The estimation capabilities of neuro-genetic models were utilized to identify the inherent relationships between the Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), chlorine (Cl) and Chemical Oxygen Demand (COD) with the land use and wetland zoology. A thematic map of the quality parameters was also generated based on the identified relationship to observe the influence that the morphological and biological diversity in and around the study area has on the quality parameters of the wetland. According to the results, the BOD, COD and Cl were found to vary with differences in land use and the presence of different plant species, whereas the DO was found to be largely invariant with changes in these parameters. The reasons may be contributed to the impact of uncontrolled eco-tourism activities around the wetland.展开更多
Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North ...Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North American lakes and reservoirs is submerged aquatic vegetation—a valuable aquatic resource which serves as productive habitat for fish, aquatic macroinvertebrates, and other wildlife. Reservoirs in the southern parts of the United States have experienced varying aquatic plant dominance dynamics due to historical water resource management actions, including drawdowns and introduction of herbivorous fish for the purpose of controlling invasive aquatic vegetation. Some of these management options have also been detrimental to native submerged aquatic vegetation. This paper explores an adaptive management research effort by installing herbivore-protected, fenced-pen submerged aquatic vegetation sites in a high-herbivore reservoir to determine effectiveness of protecting habitat and serving as founder colony sources for propagule spread. Four experimental sites with three management treatments each were planted with American eelgrass. Each site utilized one un-fenced treatment and two treatments with varying mesh sizes for protective fencing-pens. Site integrity, species survival and spread, and grazing were documented. One additional site was installed and planted with other native submerged aquatic vegetation species for nominal species performance descriptions. No plants survived unprotected in the high-herbivore system and plants, in general, performed consistently better within the smaller mesh size. These test planting results were ultimately used to inform adaptive management decision making for plant installation and expansion designs for managing reservoirs invested with Hydrilla, considered one of the most serious invasive aquatic plants in the United States.展开更多
Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic...Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.展开更多
[Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged pl...[Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianchi Lake reduced the chlorophyll content of phytoplankton and submerged plant (P. pectinatus), and it showed that E. crassipes had certain inhibitory effect on their growth; the culture solution of E. crassipes root inhibited M. aeruginosa growth obviously. [Conclusion] The study could provide scientific references for the prevention and control of ecological safety of E. crassipes.展开更多
To find out the current situation and configuration of aquatic plants in landscape water of Chengdu wetland parks,sample-plot survey of aquatic plants in landscape water in the built wetland parks of Chengdu and urban...To find out the current situation and configuration of aquatic plants in landscape water of Chengdu wetland parks,sample-plot survey of aquatic plants in landscape water in the built wetland parks of Chengdu and urban parks was conducted.The results showed that there are 41 kinds of aquatic plants in the research region,belonging to 23 families.They are mainly hygrophyte and emergent plants,while floating and submerged plants are rarely used.Configuration of aquatic plants is mainly composed of emergent plants,supplemented by floating-leaved and submerged plants,and water landscape is rich.Then,configuration of aquatic plants in wetland parks was analyzed from the ecological function,landscape construction and other aspects,to provide the reference for plant configuration of urban wetland parks.展开更多
There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The S...There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition(temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’ assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to success.展开更多
Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant vari...Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.展开更多
It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (...It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (Losinsk.) Tsien et C. G. Ma is known as a drought-and salt-tolerant plant,a kind of shrubs, growing in semi-arid land of Inner Mongolia. Because the covering effect of the perennial plant as a mulch over the soil might be expected, the optimum covering effect would be obtained after the growth period.The perennial plant produces seeds around summer and end its growth thereafter. Nutrient value of the perennial salt-tolerant plant, however,had not been reported in flowering period at different year. It is necessary to know the ruminal degradability of the plants of each growing year in order to determine the regimen to diet for ruminants. The present experiment,therefore,was undertaken to analyze the digestibility and chemical composition of Ceratoides arborescens as feed for ruminants.展开更多
For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR an...For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.展开更多
The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were ...The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.展开更多
基金supported by the National Natural Science Foundation of China(32171507,31870385,31901285)CAS"Light of West China"program。
文摘Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance.Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood.Here,we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions.To test this hypothesis,we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden.We found that although there were a few significant differences,most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants.Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70%relative water content.Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point.In addition,there was a trade-off between hydraulic efficiency and the construction cost of a flower across species.Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern.These results suggest a convergent flower economics design across terrestrial and aquatic plants,providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.
文摘The study aimed to evaluate the ability of some terrestrial and aquatic plants for wastewater purification.Aquatic plants can remove pollutants from wastewater by consuming and accumulating various contaminants in different parts of plants.Different aquatic and terrestrial plants(Rosa sinensis,Typha latifolia,Ocimm bacilicum,Azolla pinnata,and Salvinia molesta)which have the ability to decrease water pollution were utilized in this study.The capability offive different species of plants was investigated by measuring chemical oxygen demand(COD),biological oxygen demand(BOD),electrical conductivity(EC),total dissolved solids(TDS),and pH of the medium.In this research,some aquatic and terrestrial plants were transplanted in wastewater plastic pots containing domestic wastewater with different ratios of 50%and 100%.Then,after 30 days,the physiological and biochemical parameters of plants were calculated to observe the effect of wastewater on plants.Results revealed higher chlorophyll and carotenoids in typha plants treated with 100%wastewater.The highest percentage of elimination in BOD(65%),COD(27%),TDS(72%),EC(83%),and pH(6.8%)was noted with the use of typha and azolla.Intriguingly,total soluble sugars,total free amino acids,and total proteins were found maximum in the hibiscus plant as compared to the other plants under 100%and 50%domestic wastewater treatment,while typha and ocimum showed lower values of these parameters irrespective of wastewater treatments.Moreover,the COD,BOD,TDS,EC,and pH trend was higher in 100%wastewater as compared to 50%wastewater.Taking into account the accumulation capacity of the tested plants especially typha can be efficiently used for the treatment of domestic wastewater.
基金Supported by Key Project of Chinese National Programs for Fundamental Research and Development(2008CB4182028)Key Project of Jiangsu Water Conservancy Science and Technology(2009029)~~
文摘[Objective] The aim was to study effects of aquatic plants on resuspen- sion of sediment in Lake Taihu. [Method] New resuspension simulator was used in the research. Elodea nuttalli, submerged plant, and Phragmites australis, emergent aquatic plant, were grown in substrate sludge with varied planting density set. Study of simulation experiment on the feature of sediment resuspension was carried on under shearing stress of 0.2-0.5 N/m2 and agitation of 1-30 min. [Result] Aquatic plant growing would effectively reduce seston concentration in water. Concentrations of final Suspended Particulate Matter (SPM) in experimental groups and control groups were as follows: water without plant〉coverage of 30% of Elodea nuttalli〉cov- erage of 60% of Elodea nuttalli〉Phragmites australis with concentration of 50 stock/m2〉 coverage of 90% of Elodea nuttalli〉Phragmites australis with concentration of 80 stock/m2〉Phragmites australis with concentration of 150 stock/m2; SPM concentration showed a tendency from increasing to stable with change of stirring time under dif- ferent shearing stresses: SPM concentration was of severe change at early stage in barrel without aquatic plant while change of SPM concentration in barrel with aquatic plant was quite mild and grew smaller with concentration increasing; SPM concentration was reduced much more if Phragmites australis planted compared with that of Elodea nuttalli; under different shearing stresses, reduction of SPM concen- tration by increase of Phragmites australis area was much more than by increase of Elodea nuttalli area. [Conclusion] It would provide powerful scientific reference for control on aquatic environment through comprehensive research on the feature of sediment resuspension.
基金Supported by Wetlands Purification and Reuse Technique for Tail Water of Wastewater Treatment Plant in Dry Lands(2006AA06Z325)~~
文摘[Objective] The aim was to compare the water quality purifying effect of five kinds of aquatic plants.[Method] Model of surface flow wetlands was constructed in the river bank of Jialu River in Zhengzhou City,and five kinds of aquatic plants which could grow normally in winter were selected and introduced for screening experiment of aquatic plants.[Result] Five kinds of plants were growing well,and they showed strong cold resistance.However,there were some differences on water quality purifying ability among five kinds of aquatic plants,in which Oenanthe javanica and Elodea canadensis performed better on removing the TN,the removal rate was 44% and 41% respectively; Iris sibirica and O.javanica showed better performance on the removal of TP,the removal rate was 41% and 37% respectively; there was little difference on the removal effect on NH4^+-N among five kinds of plants,in which E.Canadensis performed best with the removal rate of 73%,followed by O.javanica (the removal rate was 71%),and the removal rate of I.sibirica,Rumex acetosa and Potamogeton crispus were 70%; there was no significant purification effect of five kinds of plants on CODCr,in which I.sibirica and R.acetosa performed better,and the removal rate was 14% and 13% respectively.[Conclusion] The emerging plants and submerged plants hydrophytes could be used to construct floating aquatic macrophyte-based treatment system (FAMS) in wetland vegetation allocation to improve the purification effect of wetlands of North China in winter.
文摘An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara were constructed in mesocosm aquaria. Mesocosms were dosed weekly with different P loads (0 μg/L/Week and 100 μg/L/Week) for 17 weeks. Total P (TP), total soluble P (TSP), and soluble reactive P (SRP) concentrations in the waters of mesocosms added with P were significantly higher as opposed to the unenriched control mesocosms. The biomass of the attached periphyton and the cover of floating periphyton remained abundant in P-unenriched control mesocosms throughout the test period with a TP, TSP, and SRP concentration ranging of 0.021 - 0.049 mg/L, 0.004 - 0.024 mg/L, and 0.003 - 0.018 mg/L, respectively. P addition caused the decline of attached periphyton biomass to a low level and loss of floating periphyton. Results indicate that P enrichment in an aquatic ecosystem dominated by submersed plants could reduce attached periphyton biomass and eliminate floating periphyton. The research would be useful to maintain periphyton by reducing excessive P in aquatic ecosystem dominated by submersed plants.
文摘The aim for this present study was to evaluate the antioxidant potential of aqueous extracts (AE), hydro-ethanolic extracts (HE) and ethanolic extracts (EE) obtained from an aquatic plant (<em>L. schlechteri</em>) using a simple and fast method that is the CCM. This method revealed the presence of phenolics and flavonoids at different levels but with higher antioxidant activity in EE compared to AE. Among the two families of antioxidants evaluated, the phenolic compounds were found to be higher on the EE (5.85 mgEAG/MS) followed by the HE (5.06 mgEAG/MS) and less and less important on the AE (3.661 mgEAG/MS). While the less significantly elevated flavonoids showed values of 1.146 mgECa/MS for EE, 0.406 mgECa/MS for HE et 0.181 mgECa/MS for AE. However, the anti-free radical activity was also evaluated. Unlike the antioxidant activity, the ant-free radical activity with a greater IC50 was observed on AE with a rate of 66.66 mg/mL, then less on the hydro-ethanolic and ethanolic extracts, respectively at levels of 26.15 mg/mL et 19.18 mg/mL.
基金Supported by Prefecture-level Science and Technology Program of Hetian Prefecture(202439).
文摘[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.
文摘The suspended and dissolved waste in the incoming storm water of wetlands largely depends on the adjacent land use which can influence the quality of the water body. The micro- and macro-floral population of a wetland can absorb, convert, transform and release different organic or inorganic elements, which can also change or impact the overall quality of the wetland water. The present study investigates the influence of the land use and the plant species in the waterbed on the water quality of a high-altitude, sub-tropical wetland in India. The estimation capabilities of neuro-genetic models were utilized to identify the inherent relationships between the Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), chlorine (Cl) and Chemical Oxygen Demand (COD) with the land use and wetland zoology. A thematic map of the quality parameters was also generated based on the identified relationship to observe the influence that the morphological and biological diversity in and around the study area has on the quality parameters of the wetland. According to the results, the BOD, COD and Cl were found to vary with differences in land use and the presence of different plant species, whereas the DO was found to be largely invariant with changes in these parameters. The reasons may be contributed to the impact of uncontrolled eco-tourism activities around the wetland.
文摘Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North American lakes and reservoirs is submerged aquatic vegetation—a valuable aquatic resource which serves as productive habitat for fish, aquatic macroinvertebrates, and other wildlife. Reservoirs in the southern parts of the United States have experienced varying aquatic plant dominance dynamics due to historical water resource management actions, including drawdowns and introduction of herbivorous fish for the purpose of controlling invasive aquatic vegetation. Some of these management options have also been detrimental to native submerged aquatic vegetation. This paper explores an adaptive management research effort by installing herbivore-protected, fenced-pen submerged aquatic vegetation sites in a high-herbivore reservoir to determine effectiveness of protecting habitat and serving as founder colony sources for propagule spread. Four experimental sites with three management treatments each were planted with American eelgrass. Each site utilized one un-fenced treatment and two treatments with varying mesh sizes for protective fencing-pens. Site integrity, species survival and spread, and grazing were documented. One additional site was installed and planted with other native submerged aquatic vegetation species for nominal species performance descriptions. No plants survived unprotected in the high-herbivore system and plants, in general, performed consistently better within the smaller mesh size. These test planting results were ultimately used to inform adaptive management decision making for plant installation and expansion designs for managing reservoirs invested with Hydrilla, considered one of the most serious invasive aquatic plants in the United States.
基金Sponsored by Key Technology Research and Development Program of Hebei Province(15227652D)Dynamic Control Technology of Sandy Land Protection Forest System Structure in Northern North China(2016YFC0500802-06)
文摘Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.
基金Supported by Scientific Demonstration Engineering Project in Kunming City (109S010103)
文摘[Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianchi Lake reduced the chlorophyll content of phytoplankton and submerged plant (P. pectinatus), and it showed that E. crassipes had certain inhibitory effect on their growth; the culture solution of E. crassipes root inhibited M. aeruginosa growth obviously. [Conclusion] The study could provide scientific references for the prevention and control of ecological safety of E. crassipes.
基金Sponsored by Sichuan Landscape and Recreation Research Center (JGYQ2019018)。
文摘To find out the current situation and configuration of aquatic plants in landscape water of Chengdu wetland parks,sample-plot survey of aquatic plants in landscape water in the built wetland parks of Chengdu and urban parks was conducted.The results showed that there are 41 kinds of aquatic plants in the research region,belonging to 23 families.They are mainly hygrophyte and emergent plants,while floating and submerged plants are rarely used.Configuration of aquatic plants is mainly composed of emergent plants,supplemented by floating-leaved and submerged plants,and water landscape is rich.Then,configuration of aquatic plants in wetland parks was analyzed from the ecological function,landscape construction and other aspects,to provide the reference for plant configuration of urban wetland parks.
文摘There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition(temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’ assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to success.
文摘Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species(in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following ele-ments:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their economic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material,forestation,breeding material,energy plants and eco-tourism resources.
文摘It has been proposed that salt-tolerant plant could be used as a feed resource for ruminants whereby salt would be removed from salinized land (Asian -Aust. J. Anim. Sci. (2002) 15:998 -1001). Ceratoides arborescens (Losinsk.) Tsien et C. G. Ma is known as a drought-and salt-tolerant plant,a kind of shrubs, growing in semi-arid land of Inner Mongolia. Because the covering effect of the perennial plant as a mulch over the soil might be expected, the optimum covering effect would be obtained after the growth period.The perennial plant produces seeds around summer and end its growth thereafter. Nutrient value of the perennial salt-tolerant plant, however,had not been reported in flowering period at different year. It is necessary to know the ruminal degradability of the plants of each growing year in order to determine the regimen to diet for ruminants. The present experiment,therefore,was undertaken to analyze the digestibility and chemical composition of Ceratoides arborescens as feed for ruminants.
基金The National Natural Science Foundation of China(No50378014),the National High Technology Research and Develop-ment Program of China (863Program) (No2002AA601011)
文摘For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.
基金The National Natural Science Foundation of China(No.51479034,5151101102)Fundamental Research Funds for the Central Universities(No.2242016R30008)
文摘The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.