Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that ...Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.展开更多
The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the tw...The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in the both phases by TEM image.展开更多
The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodiu...The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.展开更多
In a previous paper, we have showed that, when aqueous solutions of cationicand anionic surfactants at certain concentrations were mixed, the solution separatedspontaneously into two immiscible phases (aqueous two-pha...In a previous paper, we have showed that, when aqueous solutions of cationicand anionic surfactants at certain concentrations were mixed, the solution separatedspontaneously into two immiscible phases (aqueous two-phases), one phase was rich,and the other was poor in the mixed surfactants. A clear interfacial boundary existsbetween two phases.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(JUSRP11205)
文摘Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.
文摘The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in the both phases by TEM image.
基金the National Natural Science Foundation of China (No. 20025618, No. 20236010) Shanghai Municipal Education Commission of China.
文摘The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.
文摘In a previous paper, we have showed that, when aqueous solutions of cationicand anionic surfactants at certain concentrations were mixed, the solution separatedspontaneously into two immiscible phases (aqueous two-phases), one phase was rich,and the other was poor in the mixed surfactants. A clear interfacial boundary existsbetween two phases.