The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signa...The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H202) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN 199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L-1 AGP or 0.005 to 0.01‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L-1 AGP application level in callus induction medium plant regeneration rates of 8.49,409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L-1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 %o of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01%o of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.展开更多
To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. c...To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. cv. Mirzabey and Hordeum vulgare L. cv. Tokak) were used to establish an efficient plant regeneration system for cereals. Percentage of callus production, capacity of regeneration were calculated, and also culture effect, root, stem, and total plant length of regenerant plants were observed in six different regeneration media (MS control, MS+2, 5, 7, 10, 12 mg L-1 AGP) in these three different genotypes. According to the results, the highest amount of callus production was found in Ikizce-96 as 93.75% using 5 mg L-1 dicamba and 1 mg L-1 kinetin in induction medium. However, the most improved callus was observed in diploid barley Tokak as 179.95 mg in weight and 6.18 mm in diameter, respectively. The highest regeneration capacity was observed in the dose of 5 mg L-1 AGP in MS of all the genotypes and hexaploid wheat Ikizce-96 gave the best results with the highest regeneration capacity and culture effects (94.86 and 92.5%) in the same dose of AGE These results indicated that effective dose of AGP in regeneration medium increase plant regeneration in calli derived from cereal mature embryos.展开更多
Arabinogalactan proteins(AGPs)are widely distributed in the plant kingdom and play a vital role during the process of plant sexual reproduction.In this study,we performed a comprehensive identification of the PbrAGPs ...Arabinogalactan proteins(AGPs)are widely distributed in the plant kingdom and play a vital role during the process of plant sexual reproduction.In this study,we performed a comprehensive identification of the PbrAGPs expressed in pear pollen and further explored their influences on pollen tube growth.Among the 187 PbrAGPs that were found to be expressed in pear pollen tubes,38 PbrAGPs were specifically expressed in pollen according to the RNA-seq data.The PbrAGPs were divided into two groups of highly expressed and specifically expressed in pear pollen.We further tested their expression patterns using RT-PCR and RT-qPCR.Most of the PbrAGPs were expressed in multiple tissues and their expression levels were consistent with reads per kilobase per million map reads(RPKM)values during pollen tube growth,implying that PbrAGPs might be involved in the regulation of pear pollen tube growth.We also constructed phylogenetic trees to identify the functional genes in pear pollen tube growth.Therefore,19 PbrAGPs(PbrAGP1 to PbrAGP19)were selected to test their influences on pollen tube growth.Recombinant proteins of the 19 PbrAGP-His were purified and used to treat pear pollen,and 11 of the PbrAGP-His recombinant proteins could promote pear pollen tube growth.Additionally,pollen tube growth was inhibited when the expression levels of PbrAGP1 and PbrAGP5 were knocked down using an antisense oligonucleotide assay.PbrAGP1 and PbrAGP5 were localized in the plasma membrane and might not alter the distribution of pectin in the pollen tube.In summary,this study identified the PbrAGPs expressed in pear pollen and lays the foundation for further exploring their functions in pollen tube growth.展开更多
基金financially supported in part by the National Key Project for Tansgenic Study, Ministry of Agriculture of China(2011ZX08010-004)
文摘The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H202) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN 199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L-1 AGP or 0.005 to 0.01‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L-1 AGP application level in callus induction medium plant regeneration rates of 8.49,409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L-1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 %o of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01%o of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.
文摘To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. cv. Mirzabey and Hordeum vulgare L. cv. Tokak) were used to establish an efficient plant regeneration system for cereals. Percentage of callus production, capacity of regeneration were calculated, and also culture effect, root, stem, and total plant length of regenerant plants were observed in six different regeneration media (MS control, MS+2, 5, 7, 10, 12 mg L-1 AGP) in these three different genotypes. According to the results, the highest amount of callus production was found in Ikizce-96 as 93.75% using 5 mg L-1 dicamba and 1 mg L-1 kinetin in induction medium. However, the most improved callus was observed in diploid barley Tokak as 179.95 mg in weight and 6.18 mm in diameter, respectively. The highest regeneration capacity was observed in the dose of 5 mg L-1 AGP in MS of all the genotypes and hexaploid wheat Ikizce-96 gave the best results with the highest regeneration capacity and culture effects (94.86 and 92.5%) in the same dose of AGE These results indicated that effective dose of AGP in regeneration medium increase plant regeneration in calli derived from cereal mature embryos.
基金supported by the earmarked fund for China Agriculture Research System(CARS-28-37)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2022E21)+1 种基金the Youth Foundation of Shandong Institute of Pomology,China(GSS2022QN11)the Natural Science Foundation of Shandong Province,China(ZR2019BC075,ZR2020MC141,and ZR2021MC177)。
文摘Arabinogalactan proteins(AGPs)are widely distributed in the plant kingdom and play a vital role during the process of plant sexual reproduction.In this study,we performed a comprehensive identification of the PbrAGPs expressed in pear pollen and further explored their influences on pollen tube growth.Among the 187 PbrAGPs that were found to be expressed in pear pollen tubes,38 PbrAGPs were specifically expressed in pollen according to the RNA-seq data.The PbrAGPs were divided into two groups of highly expressed and specifically expressed in pear pollen.We further tested their expression patterns using RT-PCR and RT-qPCR.Most of the PbrAGPs were expressed in multiple tissues and their expression levels were consistent with reads per kilobase per million map reads(RPKM)values during pollen tube growth,implying that PbrAGPs might be involved in the regulation of pear pollen tube growth.We also constructed phylogenetic trees to identify the functional genes in pear pollen tube growth.Therefore,19 PbrAGPs(PbrAGP1 to PbrAGP19)were selected to test their influences on pollen tube growth.Recombinant proteins of the 19 PbrAGP-His were purified and used to treat pear pollen,and 11 of the PbrAGP-His recombinant proteins could promote pear pollen tube growth.Additionally,pollen tube growth was inhibited when the expression levels of PbrAGP1 and PbrAGP5 were knocked down using an antisense oligonucleotide assay.PbrAGP1 and PbrAGP5 were localized in the plasma membrane and might not alter the distribution of pectin in the pollen tube.In summary,this study identified the PbrAGPs expressed in pear pollen and lays the foundation for further exploring their functions in pollen tube growth.