期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
耦合拉格朗日-欧拉方法及其在海洋工程中的应用
1
作者 钱志浩 杨腾茂 刘谋斌 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期366-397,共32页
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o... Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized. 展开更多
关键词 coupled Lagrangian–Eulerian description Ocean engineering Wave–structure interaction Particle methods arbitrary Lagrangian–Eulerian(ale)methods Particle-in-cell(PIC) Material point method(MPM) Lagrangian–Eulerian stabilized collocation method(LESCM)
下载PDF
SIMULATION OF FLUID-SOLID INTERACTION ON WATER DITCHING OF AN AIRPLANE BY ALE METHOD 被引量:20
2
作者 HUA Cheng FANG Chao CHENG Jin 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第5期637-642,共6页
Ditching is considered as one of the important aspects of safety performances of airplanes. It is related primarily with the fluid-solid interaction, whose studies mainly depend on experiments at the present time. Num... Ditching is considered as one of the important aspects of safety performances of airplanes. It is related primarily with the fluid-solid interaction, whose studies mainly depend on experiments at the present time. Numerical and analytical methods for fluid-solid interaction by using 3-D full scale airplane's model will reduce the dependence on the expensive model tests. Numerical studies can be used to estimate the safety of ditching and provide a reference for the crashworthiness design. This article proposes a 3-D dynamical structural model after the real shape of an airplane and an Arbitrary Lagrange-Euler (ALE) fluid-field model, to simulate the fluid-solid interactions caused by low speed ditching. The simulation is based on interaction computational methods, within LS-DYNA nonlinear finite-element code. The results of pressure distributions and accelerating time histories of the airplane's subfloor are discussed in the context of the safety of ditching, and the simulation results and the analytical methods are verified. 展开更多
关键词 DITCHING fluid structure interaction arbitrary lagrange-euler ale finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部