Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remot...Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on M...An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.展开更多
A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapp...A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.展开更多
We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstru...We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.展开更多
Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the...Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.展开更多
We propose an explicit,single-step discontinuous Galerkin method on moving grids using the arbitrary Lagrangian-Eulerian approach for one-dimensional Euler equations.The grid is moved with the local fluid velocity mod...We propose an explicit,single-step discontinuous Galerkin method on moving grids using the arbitrary Lagrangian-Eulerian approach for one-dimensional Euler equations.The grid is moved with the local fluid velocity modified by some smoothing,which is found to con-siderably reduce the numerical dissipation introduced by Riemann solvers.The scheme preserves constant states for any mesh motion and we also study its positivity preservation property.Local grid refinement and coarsening are performed to maintain the mesh qual-ity and avoid the appearance of very small or large cells.Second,higher order methods are developed and several test cases are provided to demonstrate the accuracy of the proposed scheme.展开更多
In this paper,several arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)methods are presented for Korteweg-de Vries(KdV)type equations on moving meshes.Based on the L^(2) conservation law of KdV equations,we...In this paper,several arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)methods are presented for Korteweg-de Vries(KdV)type equations on moving meshes.Based on the L^(2) conservation law of KdV equations,we adopt the conservative and dissipative numerical fuxes for the nonlinear convection and linear dispersive terms,respectively.Thus,one conservative and three dissipative ALE-DG schemes are proposed for the equations.The invariant preserving property for the conservative scheme and the corresponding dissipative properties for the other three dissipative schemes are all presented and proved in this paper.In addition,the L^(2)-norm error estimates are also proved for two schemes,whose numerical fuxes for the linear dispersive term are both dissipative type.More precisely,when choosing the approximation space with the piecewise kth degree polynomials,the error estimate provides the kth order of convergence rate in L^(2)-norm for the scheme with the conservative numerical fuxes applied for the nonlinear convection term.Furthermore,the(k+1∕2)th order of accuracy can be proved for the ALE-DG scheme with dissipative numerical fuxes applied for the convection term.Moreover,a Hamiltonian conservative ALE-DG scheme is also presented based on the conservation of the Hamiltonian for KdV equations.Numerical examples are shown to demonstrate the accuracy and capability of the moving mesh ALE-DG methods and compare with stationary DG methods.展开更多
In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing ac...In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing accuracy-conserving(SIAC)filter is a post-processing technique to enhance the accuracy of the discontinuous Galerkin(DG)solutions.This work is the essential step to extend the SIAC filter to the moving mesh for nonlinear problems.By the post-processing theory,the negative norm estimates are vital to get the superconvergence error estimates of the solutions after post-processing in the L2 norm.Although the SIAC filter has been extended to nonuniform mesh,the analysis of fil-tered solutions on the nonuniform mesh is complicated.We prove superconvergence error estimates in the negative norm for the ALE-DG method on moving meshes.The main dif-ficulties of the analysis are the terms in the ALE-DG scheme brought by the grid velocity field,and the time-dependent function space.The mapping from time-dependent cells to reference cells is very crucial in the proof.The numerical results also confirm the theoreti-cal proof.展开更多
In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocat...In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocation method. The calculation results show that they coincide very well with the existing solutions by other methods for a circular or elliptical hole with a crack in an infinite plate. At the smae time, a series of results for different holes in a finite plate has also been obtained in this paper. The proposed functions and calculation procedure can be used for a plate of a crack emanating from an arbitrary hole.展开更多
In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a resu...In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a result,only Kelvin's solution is used,the difficulty,in finding a fundamental solution of arbitrary shells is successfully avoided.展开更多
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.51474251,51874351,and 11502226)the Natural Science Foundation of Hunan Province of China(No.2019JJ50625)and the Key Research and Development Plan of Hunan Province of China(No.2017WK2032)。
文摘Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金Project(50505027) supported by the National Natural Science Foundation of ChinaProject(20070248056) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.
基金Project supported by the China Postdoctoral Science Foundation(No.2017M610823)
文摘A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574400 and 11204379the Beijing Institute of Technology Research Fund Program for Young Scholarsthe NSFC-ICTP Proposal under Grant No 11981240356
文摘We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.
文摘Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.
文摘We propose an explicit,single-step discontinuous Galerkin method on moving grids using the arbitrary Lagrangian-Eulerian approach for one-dimensional Euler equations.The grid is moved with the local fluid velocity modified by some smoothing,which is found to con-siderably reduce the numerical dissipation introduced by Riemann solvers.The scheme preserves constant states for any mesh motion and we also study its positivity preservation property.Local grid refinement and coarsening are performed to maintain the mesh qual-ity and avoid the appearance of very small or large cells.Second,higher order methods are developed and several test cases are provided to demonstrate the accuracy of the proposed scheme.
基金This work was supported by the National Numerical Windtunnel Project NNW2019ZT4-B08Science Challenge Project TZZT2019-A2.3the National Natural Science Foundation of China Grant no.11871449.
文摘In this paper,several arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)methods are presented for Korteweg-de Vries(KdV)type equations on moving meshes.Based on the L^(2) conservation law of KdV equations,we adopt the conservative and dissipative numerical fuxes for the nonlinear convection and linear dispersive terms,respectively.Thus,one conservative and three dissipative ALE-DG schemes are proposed for the equations.The invariant preserving property for the conservative scheme and the corresponding dissipative properties for the other three dissipative schemes are all presented and proved in this paper.In addition,the L^(2)-norm error estimates are also proved for two schemes,whose numerical fuxes for the linear dispersive term are both dissipative type.More precisely,when choosing the approximation space with the piecewise kth degree polynomials,the error estimate provides the kth order of convergence rate in L^(2)-norm for the scheme with the conservative numerical fuxes applied for the nonlinear convection term.Furthermore,the(k+1∕2)th order of accuracy can be proved for the ALE-DG scheme with dissipative numerical fuxes applied for the convection term.Moreover,a Hamiltonian conservative ALE-DG scheme is also presented based on the conservation of the Hamiltonian for KdV equations.Numerical examples are shown to demonstrate the accuracy and capability of the moving mesh ALE-DG methods and compare with stationary DG methods.
基金the fellowship of China Postdoctoral Science Foundation,no:2020TQ0030.Y.Xu:Research supported by National Numerical Windtunnel Project NNW2019ZT4-B08+1 种基金Science Challenge Project TZZT2019-A2.3NSFC Grants 11722112,12071455.X.Li:Research supported by NSFC Grant 11801062.
文摘In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing accuracy-conserving(SIAC)filter is a post-processing technique to enhance the accuracy of the discontinuous Galerkin(DG)solutions.This work is the essential step to extend the SIAC filter to the moving mesh for nonlinear problems.By the post-processing theory,the negative norm estimates are vital to get the superconvergence error estimates of the solutions after post-processing in the L2 norm.Although the SIAC filter has been extended to nonuniform mesh,the analysis of fil-tered solutions on the nonuniform mesh is complicated.We prove superconvergence error estimates in the negative norm for the ALE-DG method on moving meshes.The main dif-ficulties of the analysis are the terms in the ALE-DG scheme brought by the grid velocity field,and the time-dependent function space.The mapping from time-dependent cells to reference cells is very crucial in the proof.The numerical results also confirm the theoreti-cal proof.
文摘In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocation method. The calculation results show that they coincide very well with the existing solutions by other methods for a circular or elliptical hole with a crack in an infinite plate. At the smae time, a series of results for different holes in a finite plate has also been obtained in this paper. The proposed functions and calculation procedure can be used for a plate of a crack emanating from an arbitrary hole.
基金The project supported by National Natural Science Foundation of China
文摘In this paper,a boundary element scheme for arbitrary elastic thin shells is elaborated,Based on BEM of 3D linear elasticity and Kirchhoff's hypothesis,boundary integral equations for shells are deduced. As a result,only Kelvin's solution is used,the difficulty,in finding a fundamental solution of arbitrary shells is successfully avoided.