期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem 被引量:1
1
作者 岳宝增 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期5-8,共4页
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as th... A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer. 展开更多
关键词 Navier-Stokes equation arbitrary lagrangian-eulerian ale finite element method fractional method fluid-structure interaction
下载PDF
耦合拉格朗日-欧拉方法及其在海洋工程中的应用
2
作者 钱志浩 杨腾茂 刘谋斌 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期366-397,共32页
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o... Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized. 展开更多
关键词 Coupled Lagrangian–Eulerian description Ocean engineering Wave–structure interaction Particle methods arbitrary Lagrangian–Eulerian(ale)methods Particle-in-cell(PIC) Material point method(MPM) Lagrangian–Eulerian stabilized collocation method(LESCM)
下载PDF
SIMULATION OF FLUID-SOLID INTERACTION ON WATER DITCHING OF AN AIRPLANE BY ALE METHOD 被引量:20
3
作者 HUA Cheng FANG Chao CHENG Jin 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第5期637-642,共6页
Ditching is considered as one of the important aspects of safety performances of airplanes. It is related primarily with the fluid-solid interaction, whose studies mainly depend on experiments at the present time. Num... Ditching is considered as one of the important aspects of safety performances of airplanes. It is related primarily with the fluid-solid interaction, whose studies mainly depend on experiments at the present time. Numerical and analytical methods for fluid-solid interaction by using 3-D full scale airplane's model will reduce the dependence on the expensive model tests. Numerical studies can be used to estimate the safety of ditching and provide a reference for the crashworthiness design. This article proposes a 3-D dynamical structural model after the real shape of an airplane and an Arbitrary Lagrange-Euler (ALE) fluid-field model, to simulate the fluid-solid interactions caused by low speed ditching. The simulation is based on interaction computational methods, within LS-DYNA nonlinear finite-element code. The results of pressure distributions and accelerating time histories of the airplane's subfloor are discussed in the context of the safety of ditching, and the simulation results and the analytical methods are verified. 展开更多
关键词 DITCHING fluid structure interaction arbitrary Lagrange-Euler ale finite element method
原文传递
AN ALE METHOD AND DDM WITH HIGH ACCURATE COMPACT SCHEMES FOR VORTEX-INDUCED VIBRATIONS OF AN ELASTIC CIRCULAR CYLINDER 被引量:9
4
作者 RENAn-lu CHENWen-qu LIGuang-wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第6期708-715,共8页
A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure inte... A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured. 展开更多
关键词 arbitrary lagragian-eulerian (ale) method vortex-induced vibrations domaindecomposition method (DDM) flow around a circular cylinder compact schemes
原文传递
Prediction of shear-related defect locations in semi-solid casting using numerical flow models 被引量:1
5
作者 F.PINEAU G.D'AMOURS 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期878-882,共5页
Contaminated surfaces of the feedstock materials in aluminum alloy casting processes often produce various types of defects which can affect the tensile properties of the final products as well as their fatigue reliab... Contaminated surfaces of the feedstock materials in aluminum alloy casting processes often produce various types of defects which can affect the tensile properties of the final products as well as their fatigue reliabilities.Semi-solid processing takes advantage of a much higher apparent viscosity of the die cast materials by limiting the risk of oxides formed at the free surfaces to become incorporated into the casting when the material is injected into the die.Most of existing semi-solid processes that use billets as feedstock material are however tied up with a different type of contaminated surface.During the injection phase,the external-skin on the periphery of the billet,which has been in contact with air and lubricant during the transfer in the shot sleeve,can be incorporated into the casting.When subjected to a heat treatment,the lubricant is decomposed and produces lens shape porosities.This might be a cause of reject for most structural parts.To avoid this kind of defects,the paths along which the billet skin evolves must be controlled during filling.In order to investigate the possibility of skin inclusion into cast parts during injection of the billet,a two-phase finite element mixture model is employed to model the metal flow.The formation of a skin on the periphery of the billet is modeled by setting an initial solid phase concentration profile in the radial direction.Microscopic observations of the real castings show that the approach is able to model the shear layers and to predict the paths along which the"lens porosity"defects could be formed.An Arbitrary Eulerian-Lagangian(ALE) method is also investigated and appears to be very promising to follow the skin movement in the casting. 展开更多
关键词 oxide SKIN defects TWO-PHASE flow finite element modeling arbitrary Eulerian-Lagangian(ale) method
下载PDF
A NEW FREE SURFACE MESH TRACING METHOD 被引量:1
6
作者 SUNJiang-long YEHeng-kui WANGXian-zhou LIGuo-an 《Journal of Hydrodynamics》 SCIE EI CSCD 2005年第2期199-203,共5页
Free surface flow problems involving large free motions are analysed using finite element techniques. In solving these problems an Arbitrary Lagrangian-Eulerian(ALE)kinematical description of the fluid domain is adopt... Free surface flow problems involving large free motions are analysed using finite element techniques. In solving these problems an Arbitrary Lagrangian-Eulerian(ALE)kinematical description of the fluid domain is adopted, in which the nodal points can be displaced independently of the fluid motion. A new mesh tracing method is proposed in this paper. To confirm the effectiveness of the new method, solitary wave propagation is analysed and the numerical results are compared with the analytical results. The behaviour of the viscous fluid flow with a free surface is expressed by the unsteady Navier-Stokes equation. For numerical integration in time the velocity correction fractional step method is used. 展开更多
关键词 free surface mesh tracing arbitrary lagrangian-eulerian (ale) finite element method solitary wave
原文传递
Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model
7
作者 Kang-Xin Chen Hou-Fa Shen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第11期1396-1406,共11页
Solidifi cation shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian(ALE) model is constructed to predict the macrosegregation caused by thermal–solut... Solidifi cation shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian(ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidi-fi cation shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidifi cation shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modifi ed pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized fi nite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidifi cation problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidifi cation shrinkage and thermal–solutal convection. Finally, the effect of solidifi cation shrinkage is analyzed. The results demonstrate that solidifi cation shrinkage delays the advance of the solidifi cation front and intensifi es the segregation. 展开更多
关键词 MACROSEGREGATION Solidification SHRINKAGE Finite element method arbitrary Lagrangian–Eulerian(ale)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部