In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack a...In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubi...Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.展开更多
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is ...We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is shown that the entanglement evolution is restricted by a set of monogamy relations. Furthermore, as quantified by the negativity, the entanglement dynamical property of the mixed entangled state of cavity photons is investigated. It is found that the three cavity photons can exhibit the phenomenon of entanglement sudden death (ESD). However, compared with the evolution of a generalized three-qubit GHZ state which has the equal initial entanglement, the ESD time of mixed states is later than that of the pure state. Finally, we discuss the entanglement distribution in the multipartite system, and point out the intrinsic relation between the ESD of cavity photons and the entanglement sudden birth of reservoirs.展开更多
We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proce...We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proceed to investigate the effects of different quantum noises(e.g.,amplitude-damping,phase-damping,bit-flip and phase-flip noises)on the systems.The fidelity results of three-qubit target state are presented,which are usually used to illustrate how close the output state is to the target state.To compare the different effects between the four common types of quantum noises,the fidelities under one specific identical target state are also calculated and discussed.It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels,while the fidelity is found to always maintain at 1 in bit-flip noisy channel.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle n...A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.展开更多
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to...In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation(EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established.Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability;however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.展开更多
This paper has proposed a generalized quantum state sharing protocol of an arbitrary two-particle state using non-maximally GHZ states and generalized Bell state measurement.The sender Alice performs two-particle gene...This paper has proposed a generalized quantum state sharing protocol of an arbitrary two-particle state using non-maximally GHZ states and generalized Bell state measurement.The sender Alice performs two-particle generalized Bell state measurements on her two particles in the state sharing process and the controller takes measurements on his particles and transfers the quantum information to the receiver with entanglement swapping by the cooperation of the other agents.It is found that the use of nonmaximally entangled state in quantum state sharing has enabled the secure sharing of the quantum state.展开更多
We present an efficient faithful multipartite polarization entanglement distribution protocol over an ar- bitrary noisy channel. The spatial degree of freedom is used to carry the entanglement during the transmission....We present an efficient faithful multipartite polarization entanglement distribution protocol over an ar- bitrary noisy channel. The spatial degree of freedom is used to carry the entanglement during the transmission. We describe the principle by distributing n-qubit Greenberge-Horne--Zeilinger state and n-qubit W state. Our scheme can be used to distribute arbitrary n-qUbit entangled states to n distant locations. The remote parties can obtain maximally entangled states deterministically on the polarization of photons. Only passive linear optics are employed in our setup, which makes our scheme more feasible and efficient for practical application in long distance quantum communication.展开更多
基金Project supported by NSFC(Grant Nos.61671087,61272514,61170272,61003287,61571335,61628209)the Fok Ying Tong Education Foundation(Grant No.131067)+2 种基金the National Key R&D Program of China under Grant 2017YFB0802300the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ016)Hubei Science Foundation(2016CFA030,2017AAA125)。
文摘In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the Key Fund of the Ministry of Education of China under Grant No. 206063, Natural Science Foundation of Hubei Province of China under Grant No, 2006ABA354
文摘Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10905016 and 10971247)the Natural Science Foundation of Hebei Province of China (Grant Nos. A2012205062,A2012205013,and A2010000344)the Fund of Hebei Normal niversity
文摘We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is shown that the entanglement evolution is restricted by a set of monogamy relations. Furthermore, as quantified by the negativity, the entanglement dynamical property of the mixed entangled state of cavity photons is investigated. It is found that the three cavity photons can exhibit the phenomenon of entanglement sudden death (ESD). However, compared with the evolution of a generalized three-qubit GHZ state which has the equal initial entanglement, the ESD time of mixed states is later than that of the pure state. Finally, we discuss the entanglement distribution in the multipartite system, and point out the intrinsic relation between the ESD of cavity photons and the entanglement sudden birth of reservoirs.
基金supported by the Tang Scholar Project of Soochow Universitythe National Natural Science Foundation of China(Grant No.61873162)+1 种基金the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University(Grant No.ICT2021B24)China Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology。
文摘We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proceed to investigate the effects of different quantum noises(e.g.,amplitude-damping,phase-damping,bit-flip and phase-flip noises)on the systems.The fidelity results of three-qubit target state are presented,which are usually used to illustrate how close the output state is to the target state.To compare the different effects between the four common types of quantum noises,the fidelities under one specific identical target state are also calculated and discussed.It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels,while the fidelity is found to always maintain at 1 in bit-flip noisy channel.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
文摘A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.
基金supported by the National Natural Science Foundation of China(Grant Nos.11375011 and 11372122)the Natural Science Foundation of Anhui Province(Grant No.1408085MA12)the 211 Project of Anhui University
文摘In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation(EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established.Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability;however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.
基金supported by the National Fundamental Research Program (Grant No.2010CB923202)Chinese Universities Scientific Fund (Grant No.BUPT2009RC0710)+1 种基金Specialized Research Fund for the Doctoral Program of Education Ministry of China (Grant No.20090005120008)the National Natural Science Foundation of China (Grant Nos.10704010 and 10947151)
文摘This paper has proposed a generalized quantum state sharing protocol of an arbitrary two-particle state using non-maximally GHZ states and generalized Bell state measurement.The sender Alice performs two-particle generalized Bell state measurements on her two particles in the state sharing process and the controller takes measurements on his particles and transfers the quantum information to the receiver with entanglement swapping by the cooperation of the other agents.It is found that the use of nonmaximally entangled state in quantum state sharing has enabled the secure sharing of the quantum state.
基金Supported by the National Natural Science Foundation of China under Grant No.11004258Fundamental Research Funds for the Central Universities under Grant No.CQDXWL-2012-014
文摘We present an efficient faithful multipartite polarization entanglement distribution protocol over an ar- bitrary noisy channel. The spatial degree of freedom is used to carry the entanglement during the transmission. We describe the principle by distributing n-qubit Greenberge-Horne--Zeilinger state and n-qubit W state. Our scheme can be used to distribute arbitrary n-qUbit entangled states to n distant locations. The remote parties can obtain maximally entangled states deterministically on the polarization of photons. Only passive linear optics are employed in our setup, which makes our scheme more feasible and efficient for practical application in long distance quantum communication.