期刊文献+
共找到2,446篇文章
< 1 2 123 >
每页显示 20 50 100
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
1
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations arbuscular mycorrhizal fungi Soil Properties Theobroma cacao
下载PDF
Morphological Characterization of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere According to the Age of Xanthosoma sagittifolium L. Schott Plants in the Field
2
作者 Audrey Maguy Bengono Nyimiebolo Astride Carole Djeuani +10 位作者 Hermann Désiré Mbouobda Antoine Marie Kevin Tiki Theresa Akinimbom Moma Diobe Motassy Manuela Samuel Brice Adounga Christophe Fendju Pangueko Jones Nshanji Issofa Nguetrapouna Rose Theophine Derricka Djem Moutamal A. Ziem Amang Amang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第3期161-179,共19页
The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and r... The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars. 展开更多
关键词 Xanthosoma sagittifolium L. Schott RHIZOSPHERE Harvest Site arbuscular mycorrhizal fungi DIVERSITY
下载PDF
Effects of Arbuscular Mycorrhizal Fungi(AMF) on Growth of Upland Rice under Soil Pb Contamination 被引量:2
3
作者 张旭红 杨文杰 +2 位作者 王丽明 孙长坡 雷志轶 《Agricultural Science & Technology》 CAS 2013年第11期1624-1628,共5页
[Objective] This study aimed to investigate the effects of arbuscular mycor-rhizal fungi (AMF) on growth of upland rice under soil Pb contamination. [Method] Using potting method, the effects of Glomus mosseae on th... [Objective] This study aimed to investigate the effects of arbuscular mycor-rhizal fungi (AMF) on growth of upland rice under soil Pb contamination. [Method] Using potting method, the effects of Glomus mosseae on the growth of Oryzal sati-va L. under different soil Pb concentrations (0, 300, 600 mg/kg) were investigated. [Result] According to the results, the mycorrhizal colonization rate of upland rice in-oculated with Glomus mosseae was significantly reduced (P〈0.05) with the increase of Pb concentration in soil. Compared with non-inoculation treatment, inoculation of arbuscular mycorrhizal fungi significantly improved the biomass of upland rice and Pb concentration of upland rice roots with addition of 300 mg/kg Pb but significantly reduced Pb concentration of upland rice shoots, which was consistent with the re-duced R/S (P〈0.05); with addition of 600 mg/kg Pb, inoculation of arbuscular mycor-rhizal fungi significantly improved the biomass of upland rice roots (P〈0.05) but sig-nificantly reduced Pb concentration of upland rice shoots and roots (P〈0.05); there was no significant difference in R/S between inoculation treatment and non-inocula-tion treatment. [Conclusion] This study indicated that inoculating Glomus mosseae under certain Pb concentrations could to some extent al eviate the toxic effects of Pb on Oryzal sativa L. 展开更多
关键词 Heavy metal PB arbuscular mycorrhizal fungi Upland rice
下载PDF
Effects of Arbuscular Mycorrhizal Fungi on Upland Rice Oxidative Stress Induced by Cu and Pb Contamination in Soil 被引量:2
4
作者 张旭红 王丽明 +1 位作者 张莘 林爱军 《Agricultural Science & Technology》 CAS 2014年第1期123-126,131,共5页
[Objective] This study aimed to investigate the effect of arbuscular mycor-rhizal fungi on upland rice oxidative stress induced by Cu and Pb contamination in soil. [Method] The upland rice seeds were sowed in pots, in... [Objective] This study aimed to investigate the effect of arbuscular mycor-rhizal fungi on upland rice oxidative stress induced by Cu and Pb contamination in soil. [Method] The upland rice seeds were sowed in pots, in which the soil was previously mixed with a certain amount of Glomus mosseae and 0, 100 and 200 mg/kg Cu, or 0, 300 and 600 mg/kg Pb. In the control treatment, Glomus mosseae was inactivated before mixed into the soil. Then, the physiological and chemical properties of the aboveground parts of rice plants were measured at mature stage. [Result] Compared with the control treatment (NM), Glomus mosseae (GM) treat-ment inhibited the POD, CAT and SOD activity while increased the soluble protein content under 100 mg/kg Cu and 300 mg/kg Pb treatment, improved the POD and CAT activity and soluble protein content while decreased SOD activity under 200 mg/kg Cu. SOD and POD activity showed no significant difference between NM and GM treatment under 600 mg/kg Pb, but the CAT activity was enhanced and soluble protein content was decreased. [Conclusion] This study wil provide theoretical refer-ence for bioremediation of soil heavy metal pol ution. 展开更多
关键词 PB arbuscular mycorrhizal fungi Upland rice Oxidative stress
下载PDF
Effects of Arbuscular Mycorrhizal Fungi (AMF) on Distribution of Pb Forms in Rhizosphere of Upland Rice
5
作者 张旭红 林爱军 +1 位作者 张莘 郭兰萍 《Agricultural Science & Technology》 CAS 2012年第7期1484-1488,1520,共6页
[Objective] The aim was to study the effects of AMF on distribution of Pb in different chemical forms in rhizosphere soil of upland rice. [Method] A pot experiment was conducted to explore effects of AMF inoculation o... [Objective] The aim was to study the effects of AMF on distribution of Pb in different chemical forms in rhizosphere soil of upland rice. [Method] A pot experiment was conducted to explore effects of AMF inoculation on distribution of Pb in different forms in rhizosphere of rice (Oryzal sativa L.) with Pb in different concentrations (0, 300 and 600 mg/kg). [Result] With inoculation adopted, mycorrzhial colonization rate of upland rice under Pb pdlution root declined substantially with Pb increasing in soils (P<0.05). Compared with non-inoculation, rhizosphere pH significantly enhanced by inoculation; when Pb was at 300 mg/kg, glomalin content in soils improved significantly by inoculation; when Pb was at 600 mg/kg, glomalin content in soils declined substantially (P<0.05). In addition, inoculation significantly improved contents of Pb in exchangeable and organic forms, but lowered Pb in carbonate bound and Fe-Mn oxides bound forms (P<0.05). [Conclusion] The research indicated that AMF inoculation would change distribution of Pb in different forms in rhizosphere soils of upland rice. 展开更多
关键词 Pb distribution arbuscular mycorrhizal fungi Upland rice RHIZOSPHERE
下载PDF
General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis
6
作者 Li Cui Jianguo Wang +8 位作者 Zhaohui Tang Zheng Zhang Sha Yang Feng Guo Xinguo Li Jingjing Meng Jialei Zhang Yakov Kuzyakov Shubo Wan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2618-2632,共15页
Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fun... Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fungal colonization are key to understanding the development and maintenance of these symbioses.Here,we investigated metabolic changes in the roots of peanut(Arachis hypogaea L.)plants during the colonization and development of AM symbiosis,and compared them to uncolonized roots.The primary changes during the initial stage of AM colonization were in the contents and compositions of phenylpropanoid and flavonoid compounds.These compounds function in signaling pathways that regulate recognition,interactions,and pre-colonization between roots and AM fungi.Flavonoid compounds decreased by 25%when the symbiosis was fully established compared to the initial colonization stage.After AM symbiosis was established,general metabolism strongly shifted toward the formation of lipids,amino acids,carboxylic acids,and carbohydrates.Lipid compounds increased by 8.5%from the pre-symbiotic stage to well-established symbiosis.Lyso-phosphatidylcholines,which are signaling compounds,were only present in AM roots,and decreased in content after the symbiosis was established.In the initial stage of AM establishment,the content of salicylic acid increased two-fold,whereas jasmonic acid and abscisic acid decreased compared to uncolonized roots.The jasmonic acid content decreased in roots after the symbiosis was well established.AM symbiosis was associated with high levels of calcium,magnesium,and D-(+)-mannose,which stimulated seedling growth.Overall,specific metabolites that favor the establishment of AM symbiosis were common in the roots,primarily during early colonization,whereas general metabolism was strongly altered when AM symbiosis was well-established.In conclusion,specialized metabolites function as signaling compounds to establish AM symbiosis.These compounds are no longer produced after the symbiosis between the roots and AM becomes fully established. 展开更多
关键词 Arachis hypogaea L. arbuscular mycorrhizae fungi METABOLITES symbiotic association
下载PDF
Diversity of Arbuscular Mycorrhizal Fungi Associated with Six Rice Cultivars in Italian Agricultural Ecosystem Managed with Alternate Wetting and Drying 被引量:1
7
作者 Veronica VOLPE Franco MAGURNO +2 位作者 Paola BONFANTE Stefano GHIGNONE Erica LUMINI 《Rice science》 SCIE CSCD 2023年第4期348-358,I0028-I0030,共14页
Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was propo... Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was proposed to utilize water and nutrients more sustainable.In this study,we selected six rice cultivars(Centauro,Loto,Selenio,Vialone nano,JSendra and Puntal)grown under AWD conditions,and investigated their responsiveness to AM colonization and how they select diverse AM taxa.In order to investigate root-associated AM fungus communities,molecular cloning-Sanger sequencing on small subunit rDNA data were obtained from five out of the six rice cultivars and compared with Next Generation Sequencing(NGS)data,which were previously obtained in Vialone nano.The results showed that all the cultivars were responsive to AM colonization with the development of AM symbiotic structures,even if with differences in the colonization and arbuscule abundance in the root systems.We identified 16 virtual taxa(VT)in the soil compartment and 7 VT in the root apparatus.We emphasized that the NGS analysis gives additional value to the results thanks to a more in-depth reading of the less represented AM fungus taxa. 展开更多
关键词 alternate wetting and drying system arbuscular mycorrhizal fungi rice molecular diversity virtual taxa
下载PDF
Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest 被引量:1
8
作者 Wenhao Jin Jiaying Tu +7 位作者 Qifeng Wu Liyuan Peng Jiajia Xing Chenfei Liang Shuai Shao Junhui Chen Qiufang Xu Hua Qin 《Forest Ecosystems》 SCIE CSCD 2023年第3期337-347,共11页
Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant... Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway. 展开更多
关键词 Bamboo expansion Soil respiration Soil organic carbon Plant C allocation arbuscular mycorrhizal fungi
下载PDF
Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China 被引量:13
9
作者 QIU Lang BI Yinli +3 位作者 JIANG Bin WANG Zhigang ZHANG Yanxu Yryszhan ZHAKYPBEK 《Journal of Arid Land》 SCIE CSCD 2019年第1期135-147,共13页
In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biolog... In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biological properties of soil also change, resulting in more susceptible to degradation. In particular, subsidence causes disturbance of the symbioses of plant and microbe that can play a beneficial role in the establishment of vegetation communities in degraded ecosystems. The objective of this study was to evaluate the effects of revegetation with exotic arbuscular mycorrhizal fungi(AMF) inoculum on the chemical and biological properties of soil over time in mining subsidence areas. Soils were sampled at a depth up to 30 cm in the adjacent rhizosphere of Amorpha fruticose Linn. from five reclaimed vegetation communities in northwestern China. In August 2015, a field trial was set up with five historical revegetation experiments established in 2008(7-year), 2011(4-year), 2012(3-year), 2013(2-year) and 2014(1-year), respectively. Each reclamation experiment included two treatments, i.e., revegetation with exotic AMF inoculum(AMF) and non-AMF inoculum(the control). Root mycorrhizal colonization, glomalin-related soil protein(GRSP), soil organic carbon(SOC), soil nutrients, and enzyme activities were also assessed. The results showed that mycorrhizal colonization of inoculated plants increased by 33.3%–163.0% compared to that of non-inoculated plants(P<0.05). Revegetation with exotic AMF inoculum also significantly improved total GRSR(T-GRSP) and easily extracted GRSP(EE-GRSP) concentrations compared to control, besides the T-GRSP in 1-year experiment and the EE-GRSP in 2-year experiment. A significant increase in SOC content was only observed in 7-year AMF reclaimed soils compared to non-AMF reclaimed soils. Soil total N(TN), Olsen phosphorus(P) and available potassium(K) were significantly higher in inoculated soil after 1–7 years of reclamation(except for individual cases), and increased with reclamation time(besides soil Olsen P). The exotic AMF inoculum markedly increased the average soil invertase, catalase, urease and alkaline phosphatase by 23.8%, 21.3%, 18.8% and 8.6%, respectively(P<0.01), compared with the control. Root mycorrhizal colonization was positively correlated with soil parameters(SOC, TN and soil available K) and soil enzyme activities(soil invertase, catalase, urease and alkaline phosphatase) in both AMF and non-AMF reclaimed soils(P<0.05), excluding availableK in non-AMF reclaimed soils. T-GRSP(P<0.01) and EE-GRSP(P<0.05) were significantly correlated with the majority of edaphic factors, except for soil Olsen P. The positive correlation between root mycorrhizal colonization and available K was observed in AMF reclaimed soils, indicating that the AMF reclaimed soil with a high root mycorrhizal colonization could potentially accumulate available K in soils. Our findings concluded that revegetation with exotic AMF inoculum influenced soil nutrient availability and enzyme activities in the semi-arid ecosystem, suggesting that inoculating AMF can be an effective method to improve soil fertility and support restoration of vegetation communities under poor conditions like soil nutrient deficiency and drought. 展开更多
关键词 REVEGETATION mycorrhizal COLONIZATION glomalin-related soil proteins arbuscular mycorrhizal fungi coal mining amorpha fruticose
下载PDF
Effects of Arbuscular Mycorrhizal Fungi on the Physiology and Saponin Synthesis of Paris polyphylla var. yunnanensis at Different Nitrogen Levels
10
作者 Can Huang Shubiao Qian +5 位作者 Xiaoxian Li Xiahong He Shuhui Zi Congfang Xi Rui Shi Tao Liu 《Journal of Botanical Research》 2023年第3期1-26,共26页
Arbuscular mycorrhizal fungi(AMF)are important members of the plant microbiome and affect the uptake and transfer of mineral elements by forming a symbiotic relationship with plant roots.Nitrogen(N),as an important mi... Arbuscular mycorrhizal fungi(AMF)are important members of the plant microbiome and affect the uptake and transfer of mineral elements by forming a symbiotic relationship with plant roots.Nitrogen(N),as an important min­eral element,can directly affect plant growth and development at different N levels.It has been confirmed that inoc­ulation with AMF can improve the efficiency of N utilization by plants.However,there are still fewer reports on the dynamic relationship between arbuscular mycorrhizal and plant secondary metabolites at different nitrogen levels.In this experiment,the physiological indexes and genes related to saponin synthesis were determined by applying differ­ent concentration gradients of nitrogen to the medicinal plant P.polyphylla var.yunnanensis infested by AMF as the test material.It was found that nitrogen addition increased the biomass,chlorophyll content,and nutrient content of above-and below-ground plant parts and increased the content of saponin content of P.polyphylla var.yunnanensis to some extent,but AMF inoculation increased the saponin content of P.polyphylla var.yunnanensis more significantly.AMF inoculation also promoted the expression of genes related to the saponin synthesis pathway,including 3-hy­droxy-3-methylglutaryl coenzyme A synthase(HMGS),squalene epoxidase 1(SE1),and cycloartenol synthase(CAS),which is in according with the accumulation of saponin in plants.It also may increase the saponin content of AMF plants by altering the expression of P450s and UGTs related to saponin synthesis. 展开更多
关键词 NITROGEN arbuscular mycorrhizal fungi SAPONIN P.polyphylla var.yunnanensis
下载PDF
Biodiversity of arbuscular mycorrhizal fungi in Amygdalus scoparia Spach plantations and a natural stand 被引量:4
11
作者 Javad Mirzaei Mostafa Moradi 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第6期1203-1211,共9页
The biodiversity of arbuscular mycorrhizal fungi(AMF) was surveyed in the Kolm region of Iran in three adjacent sites, a natural stand, a 10-year-old and a 15-yearold plantation of Amygdalus scoparia. To date, there h... The biodiversity of arbuscular mycorrhizal fungi(AMF) was surveyed in the Kolm region of Iran in three adjacent sites, a natural stand, a 10-year-old and a 15-yearold plantation of Amygdalus scoparia. To date, there have been few studies of AMF biodiversity in Iran, especially in the western forests of the country. For this study, soil and root samples were taken from A. scoparia rhizosphere soil in spring and autumn. Almost half of the root length was colonized by AMF. We identified 13 AMF species belonging to Glomeraceae, Claroideoglomeraceae or Diversisporaceae. The three plantations differed in terms of soil electrical conductivity, organic C and P. Spore density was significant correlated with P concentration. Root length colonization was correlated only with soil Ca.Species diversity and richness were significantly correlated with soil N, P, organic C and spore density. AMF diversity in 15-year-old plantations was more similar to that in the natural stand than in the 10-year-old plantation. We confirmed that a 15-year-old plantation is not similar in terms of AMF colonization to natural stands. We conclude that more than 15 years are required for AMF colonization of plantations to resemble that of natural stands. 展开更多
关键词 arbuscular mycorrhizal amygdalus scoparia BIODIVERSITY
下载PDF
Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert 被引量:3
12
作者 Tao ZHANG ChangYan TIAN +2 位作者 Yu SUN DengSha BAI Gu FENG 《Journal of Arid Land》 SCIE 2012年第1期43-51,共9页
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. ... Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy. 展开更多
关键词 arbuscular mycorrhizal fungi Gurbantunggut Desert ephemeral annual plants ephemeral perennial plants DYNamICS PHENOLOGY mycorrhizal colonization spore density
下载PDF
Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil 被引量:2
13
作者 HUO Wei-ge CHAI Xiao-fen +3 位作者 WANG Xi-he William David BATCHELOR Arjun KAFLE FENG Gu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第10期3051-3066,共16页
The species richness and propagule number of arbuscular mycorrhizal fungi(AMF)are high in intensively-managed agricultural soils.Past research has shown that AMF improve crop phosphorus(P)uptake under low soil P condi... The species richness and propagule number of arbuscular mycorrhizal fungi(AMF)are high in intensively-managed agricultural soils.Past research has shown that AMF improve crop phosphorus(P)uptake under low soil P conditions,however it is unclear if AMF play a role in high Olsen-P soils.In this study,we investigated whether native fungal benefits exist under high P input field conditions in-situ and contribute to P utilization.We installed in-grow tubes which were sealed with different membrane pore sizes(30 or 0.45μm)to allow or prevent AMF hyphae access to the hyphal compartment and prevent cotton roots from penetrating the chamber.We used the depletion of soil available P(Olsen-P)in the hyphae accessed compartment to indicate P uptake by the native AMF community.Our results showed that the native AMF mediated P depletion and microbial biomass P(MBP)turnover and caused the largest Olsen-P depletion ratio and MBP turnover ratio in the high P treatments(Olsen-P:78.29 mg kg^(-1)).The cotton roots in each fertilization regime were colonized by a unique AMF community and Glomus and Paraglomus were the dominant genera,implying the longterm fertilization regimes domesticated the AMF community.We conclude that native AMF caused the P depletion and P turnover even under high soil Olsen-P conditions. 展开更多
关键词 arbuscular mycorrhizal fungi phosphorus depletion high P soil Gossypium spp. indigenous community mesh cores
下载PDF
Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil 被引量:1
14
作者 A.Barua S.D.Gupta +1 位作者 M.A.U.Mridha M.K.Bhuiyan 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第4期423-432,522,共11页
Arsenic (As) in the soils of South-Eastern Bangladesh is not rely a threat for the health of millions of people but also a problem for plant growth due to its higher concentration in soil. Gmelina arborea Linn. is a... Arsenic (As) in the soils of South-Eastern Bangladesh is not rely a threat for the health of millions of people but also a problem for plant growth due to its higher concentration in soil. Gmelina arborea Linn. is a promising fast growing tree species in Bangladesh which has dso a potential to be planted in arsenic contaminated areas. This study tssessed the role of arbuscular mycorrhizal (AM) fungi on the growth of 7. arborea in arsenic amended soils at nursery stage. Before sowing ;eeds, soils were treated with four different concentrations (10 mg.kg^-1, 25 mg.kg^-1, 50 mg.kg^-1, and 100 mg.kg^-1) of Arsenic. Growth parameters length of shoot and root, collar diameter, fresh and dry weight of shoot and root) of the plant, and mycorrhizal root colonization and spore population in the rhizosphere soil of G. arborea were recorded. Mycorrhizal seedlings showed better growth than non-mycorrhizal eedlings. Myeorrhizal seedlings planted in soil with 10-mg.kg^-1 arsenic howed best performance in terms of growth, biomass and mycorrhizal :olonization, compared to other treatments with higher concentration of Lrsenie. With increasing arsenic concentration, growth of seedlings, nycorrhizal infection rate and spore population, all decreased ignificantly (p〈0.05). The mycorrhizal seedlings had as much as 40% higher increment in total growth and 2.4 times higher increment in biomass compared to non-mycorrhizal seedlings. The study clearly indicated that mycorrhizal inoculation could reduce the harmful effects of arsenic on the initial growth of G. arborea Linn. in degraded soil at nursery stage. 展开更多
关键词 ARSENIC arbuscular mycorrhizal fungi Gmelina arborea Linn. BIOREMEDIATION plant growth
下载PDF
Influence of Sowing Season and Host Crop Identity on the Community Structure of Arbuscular Mycorrhizal Fungi Colonizing Roots of Two Different Gramineous and Leguminous Crop Species 被引量:1
15
作者 Masao Higo Katsunori Isobe +2 位作者 Yukiya Matsuda Mio Ichida Yoichi Torigoe 《Advances in Microbiology》 2015年第2期107-116,共10页
Introduction of cover crops may improve the diversity of arbuscular mycorrhizal fungi (AMF) in roots and soil under crop rotational systems;therefore, it is necessary to determine the potential for AMF communities to ... Introduction of cover crops may improve the diversity of arbuscular mycorrhizal fungi (AMF) in roots and soil under crop rotational systems;therefore, it is necessary to determine the potential for AMF communities to improve sustainable food production. We investigated the impact of cover crops, including wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), pea (Pisum sativum L.), and hairy vetch (Vicia villosa Roth.), on the AMF communities in their roots in autumn and spring sowing seasons with PCR-DGGE analysis. Although all four cover crops impacted the AMF community structure in roots, the diversity of AMF communities was unchanged among crop type or sowing season. Redundancy analysis (RDA) demonstrated that AMF communities within crop type were significantly different. However, the AMF community structures were not influenced by growing season, suggesting that growth stage in crops may be more responsive to shaping AMF community structure in crop roots than host crop identity. 展开更多
关键词 arbuscular mycorrhizal fungi Community Structure CROP IDENTITY Host Selectivity SOWING Season
下载PDF
Isolation and Identification of Arbuscular Mycorrhizal Fungi from Agricultural Fields of Vietnam 被引量:1
16
作者 Zita Sasvári Franco Magurno +5 位作者 Dóra Galanics Tran Thi Nhu Hang Tran Thi Hong Ha Nguyen Dinh Luyen Le Mai Huong Katalin Posta 《American Journal of Plant Sciences》 2012年第12期1796-1801,共6页
The rising claim for more environmental friendly and healthy agriculture is a strong incentive to find alternative strategies to replace the use of mineral fertilizer and pesticide. Arbuscular mycorrhizal fungi (AMF),... The rising claim for more environmental friendly and healthy agriculture is a strong incentive to find alternative strategies to replace the use of mineral fertilizer and pesticide. Arbuscular mycorrhizal fungi (AMF), a main component of soil microbiota, represent a promising tool as providers of key ecological services. The present work represented one of the first attempts to study, under a morphological and molecular point of view, the AMF communities associated to some strategic crops in Vietnam. The findings about the AMF morphotypes dominant in different crop systems could be a starting point for the development of well performing and adapted inocula suitable for the application in field. 展开更多
关键词 arbuscular mycorrhizal fungi Spore Density Vietnam Crops
下载PDF
Effect of Arbuscular Mycorrhizal Fungi and Their Partner Bacteria on the Growth of Sesame Plants and the Concentration of Sesamin in the Seeds
17
作者 Sachie Horii Takaaki Ishii 《American Journal of Plant Sciences》 2014年第20期3066-3072,共7页
Arbuscular mycorrhizal fungi (AMF) can stimulate the plant growth. Pseudomonas sp. (KCIGC01) NBRC109613 isolated from the spores of Glomus clarum IK97, an AMF, is reported to support the plant growth and development a... Arbuscular mycorrhizal fungi (AMF) can stimulate the plant growth. Pseudomonas sp. (KCIGC01) NBRC109613 isolated from the spores of Glomus clarum IK97, an AMF, is reported to support the plant growth and development as partner bacteria (PB) for AMF REF _Ref399417929 \r \h \* MERGEFORMAT [1]. In order to investigate the effect of G. clarum IK97 and Pseudomonas sp. (KCIGC01) NBRC109613 on the secondary metabolites, these microorganisms were inoculated to sesame plants. The inoculation of these microorganisms stimulated the growth of sesame. The rate of sesame root colonization in G. clarum IK97 + Pseudomonas sp. (KCIGC01) NBRC109613 inoculated plants (66.4% ± 4.4%) was higher than that in G. clarum IK97 alone inoculated plants (39.2% ± 5.8%). Furthermore, the content of sesamin in sesame seeds was increased by the inoculation of these microorganisms. In particular, the content of sesamin in the treatment inoculated with G. clarum IK97 and Pseudomonas sp. (KCIGC01) NBRC-109613 was 11.4 ± 1.5 mg/g seed. The results suggest that AMF and their partner bacteria can stimulate the growth and development of sesame plants and increase the content of sesamin in the seeds. 展开更多
关键词 arbuscular mycorrhizal fungi PARTNER BACTERIA SESamIN SESamOLIN
下载PDF
Effects of Biochar,Arbuscular Mycorrhizal Fungi and Nitrogen Application on Crop(Cichorium intybus L.)Growth and Soil Properties in Cadmium Contaminated Soil
18
作者 Su Li-fei Li Yan-cong +3 位作者 Wang Sui Sun Xiao-he Liu Bo-wen Sun Yan-kun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第4期11-23,共13页
The effects of biochar(BC),arbuscular mycorrhizal fungi(AM),nitrogen(N)and their composite treatments(BC+N,AM+N,BC+AM and BC+AM+N)application on Cichorium intybus L.(C.intybus L.)nutrient uptake,soil properties and ca... The effects of biochar(BC),arbuscular mycorrhizal fungi(AM),nitrogen(N)and their composite treatments(BC+N,AM+N,BC+AM and BC+AM+N)application on Cichorium intybus L.(C.intybus L.)nutrient uptake,soil properties and cadmium(Cd)accumulation were investigated in Cd contaminated soil(0.11 mg·kg^(-1)).The results showed that the addition of BC increased the rate of mycorrhizal infection.However,the addition of N slightly inhibited mycorrhizal colonization,and the shoot and root bioaccumulation of chicory was positively influenced by BC and N when inoculated with AM fungi.Compared with the single component treatment(AM,BC or N)or two-component treatment(BC+N,AM+N or BC+AM),the three-component composite treatment(BC+AM+N)had the highest shoot bioaccumulation,whereas BC+AM treatment was considered the best for root biomass bioaccumulation.Compared with the control treatment,the single component treatment(AM,BC or N)and the composite treatment resulted in an overall improvement of the chicory shoot,root related nutrient uptake(N,P,K,Mg,Ca,Mn and Fe)and some soil physicochemical properties;in addition,these treatments showed better results than BC+AM+N and BC+AM treatments.Among the Cd-related indexes,Cd concentrations in the shoot,root and soil of C.intybus L.were reduced through treatment with AM and BC.However,a lower bioconcentration coefficient(BCF)and a higher transfer coefficient(TF)were observed in both treatments,and the most desirable effect was observed following the combination treatment(BC+AM).Compared with other single management,the shoot and root Cd concentrations of C.intybus L.after the management of N alone were higher,and the value of BCF(2.63%)was higher,but the value of TF(1.05%)was lower.Indexes related to Cd improved concurrently following the application of N in combination with BC or AM.Therefore,in Cd contaminated soils,single or combined application of BC,AM and N could promote chicory growth and nutrient uptake and improve some soil physicochemical properties.However,N should not be applied alone and needed to be combined with AM and BC;furthermore,it was evident that the treatment with the three composites(BC+AM+N)was optimal from an application point of view. 展开更多
关键词 BIOCHAR arbuscular mycorrhizal fungi nitrogen nutrient absorption cadmium accumulation soil nutrient
下载PDF
Effects of Two Kinds of Arbuscular Mycorrhizal Fungi (AMF) Inoculums on Cucumber Seedlings Growth
19
作者 Sun Xiuxiu Jin Wenjuan +3 位作者 Li Yansu Yan Yan Yu Xianchang He Chaoxing 《Plant Diseases and Pests》 CAS 2016年第5期36-38,共3页
To study the effects of AMF ( arbuscular mycorrhizal fungi) ineeulums on seedling growth of cucumber, vegetable seeds were inoculated with two kinds of AMF ineculums BF ( mycorrhiza for plants) and VT ( mycorrhiz... To study the effects of AMF ( arbuscular mycorrhizal fungi) ineeulums on seedling growth of cucumber, vegetable seeds were inoculated with two kinds of AMF ineculums BF ( mycorrhiza for plants) and VT ( mycorrhiza for vegetables) from Czech Republic during sowing in trays in greenhouse. The root AMF infection rates in seedlings were 49.30% and 37.65% respectively after 35 d growth. The plant height, stem diameter, fresh and dry weight of those seedlings inoculated with BF and VT were higher than that in CK. Compared with the CK, VT inoculation significantly improved the root activity, chlorophyll content and photosynthetic rate of cucumber seedlings. Comprehensive analysis showed that VT could promote seedling growth of protected cucumber. 展开更多
关键词 CUCUMBER arbuscular mycon'hizal fungi amF) ineculum Seedling growth Photosynthetic physiology
下载PDF
Mycorrhizal colonization and distribution of arbuscular mycorrhizal fungi associated with Michelia champaca L.under plantation system in northeast India
20
作者 Das Panna Kayang Highland 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期137-142,I0003,I0004,共8页
Arbuscular mycorrhizal fungi(AMF) and dark septate endophyte(DSE) colonization were investigated in three different plantation sites(Umdihar,Umsaw and Mawlein) of Meghalaya,northeast India.Isolation and identifi... Arbuscular mycorrhizal fungi(AMF) and dark septate endophyte(DSE) colonization were investigated in three different plantation sites(Umdihar,Umsaw and Mawlein) of Meghalaya,northeast India.Isolation and identification of the AMF spore were conducted to evaluate the AMF diversity and host preference in terms of AMF species distribution and abundance in the plantation sites.Results showed that AMF colonization was significantly higher than dark septate endophyte colonization(p〉0.05).AMF and DSE colonization had a narrow range of colonization,varying from 50.91%-58.95% and 1.84%-4.11%,respectively.Spore density varied significantly in all the sites(p〉0.05).Out of 29 species identified from 7 genera,the species from Glomus was found to be highly abundant.Sorenson coefficient(Cs) ranged from 0.35-7.0.Species richness varied from 2.0-2.9 in the sites.Total species richness was significantly correlated with total relative abundance(p=0.001).The distribution,abundance and principal component analysis plot suggest that Glomus macrocarpum,G.multicaulis,G.constrictum and Acaulospora sp 1 were the most host preferred species which possibly may favour the host with proper nutrient acquisition and growth. 展开更多
关键词 arbuscular mycorrhizal colonization dark septate endophyte colonization GLOMUS Michelia champaca
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部