The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker. Besides, electrode evaporation is inevitable during the a...The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker. Besides, electrode evaporation is inevitable during the arcing process, which may affect the SF6 arc behaviour significantly. In this study a numerical investigation on the arc characteristics of a supersonic nozzle is carried out, by considering the influence of the pressure ratio between the inlet and outlet, and the Cu vapour. It is demonstrated that a lower inlet pressure may result in a higher arc temperature, a lower arc voltage and a smaller mach number, and Cu vapour from electrode evaporation may cool the arc significantly.展开更多
A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion ...A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion circuit breaker is simulated numerically by finite element method and the influence of PTFE vapour on the arc is analysed with this model. The results reveal that the flow field inside the arc chamber is determined by the arc current, the arcing time, the nozzle arc and the clogging of its thermal boundary. The establishment of quenching pressure relies on both SF6 gas and PTFE vapour that absorbed arc energy in the nozzle. The PTFE vapour leads to an increase in the pressure of nozzle arc obviously, and a decrease in the temperature of arc. But it enhances the temperature of arc at zero current and slows down the decreasing rate of arc temperature as the current decreases.展开更多
基金supported by the Program for New Century Excellent Talents in University of China(NCET-06-0830)
文摘The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker. Besides, electrode evaporation is inevitable during the arcing process, which may affect the SF6 arc behaviour significantly. In this study a numerical investigation on the arc characteristics of a supersonic nozzle is carried out, by considering the influence of the pressure ratio between the inlet and outlet, and the Cu vapour. It is demonstrated that a lower inlet pressure may result in a higher arc temperature, a lower arc voltage and a smaller mach number, and Cu vapour from electrode evaporation may cool the arc significantly.
文摘A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion circuit breaker is simulated numerically by finite element method and the influence of PTFE vapour on the arc is analysed with this model. The results reveal that the flow field inside the arc chamber is determined by the arc current, the arcing time, the nozzle arc and the clogging of its thermal boundary. The establishment of quenching pressure relies on both SF6 gas and PTFE vapour that absorbed arc energy in the nozzle. The PTFE vapour leads to an increase in the pressure of nozzle arc obviously, and a decrease in the temperature of arc. But it enhances the temperature of arc at zero current and slows down the decreasing rate of arc temperature as the current decreases.