In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transf...In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transform method in an arbitrary complex region. The Navier-Stokes equations for two-dimensional incompressible viscous flows are discretized in the Body Fitted Coordinate (BFC) system. The transformed SIMPLE algorithm is proposed to modify the pressure-velocity field and a transformed VOF method is used to trace the free surface. Hydrodynamic characteristics on an arc crown wall are obtained by the improved numerical model based on the BFC system (BFC model). The velocity field, the pressure field and the time profiles of the water surface near the arc crown wall obtained by using the BFC model and the Cartesian model are compared. The BFC model is verified by experimental results.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51179030, 50921001)
文摘In the present study, a new algorithm based on the Volume Of Fluid (VOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall. Structured grids are generated by the coordinate transform method in an arbitrary complex region. The Navier-Stokes equations for two-dimensional incompressible viscous flows are discretized in the Body Fitted Coordinate (BFC) system. The transformed SIMPLE algorithm is proposed to modify the pressure-velocity field and a transformed VOF method is used to trace the free surface. Hydrodynamic characteristics on an arc crown wall are obtained by the improved numerical model based on the BFC system (BFC model). The velocity field, the pressure field and the time profiles of the water surface near the arc crown wall obtained by using the BFC model and the Cartesian model are compared. The BFC model is verified by experimental results.