The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The mi...The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.展开更多
CrN coatings were deposited using cathodic arc evaporation in stationary system on the substrate surface faced to the plasma source and on the back surface.The effect of nitrogen pressure on the structure and phase co...CrN coatings were deposited using cathodic arc evaporation in stationary system on the substrate surface faced to the plasma source and on the back surface.The effect of nitrogen pressure on the structure and phase composition,mechanical and tribological properties of the coatings was investigated.The coating morphology and structure were characterized using SEM and contact profilometry and X-ray diffractometry,respectively.Mechanical properties were studied by nanoindentation.The friction and wear properties of the coatings were investigated by ball-on-disk tribometer.An increase in nitrogen pressure during coating deposition results in phase transformation according to the relation Cr2N→Cr2N+CrN→CrN.The roughness of the coatings deposited on the front side of the substrate is higher than that on the back side,mainly due to larger number of macroparticles.The hardness and elastic modulus are also higher on the front side of the substrate.The adhesion and wear rate of the coatings have an inverse relationship.展开更多
TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical pr...TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical properties (absorptance and emittance) of the coatings were measured by a spectrophotometer. It was found that, after being annealed for 2 hours at different temperatures, the absorptance of the coatings reached the highest value of 0.92 at 700 ℃ while the emittance got the lowest value of 0.38 at 800 ℃. When the coatings were annealed at 600 ℃ for 24 hours, the optical properties changed to 0.92/0.44 (absorptance/ emittance). By measuring the structure, morphology, elements and surface roughness of the coatings, it was found that both the elemental composition and the surface roughness of the coatings changed as a result of annealing, and these changes caused the change of the optical properties of the coatings.展开更多
CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by u...CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.展开更多
文摘The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.
文摘CrN coatings were deposited using cathodic arc evaporation in stationary system on the substrate surface faced to the plasma source and on the back surface.The effect of nitrogen pressure on the structure and phase composition,mechanical and tribological properties of the coatings was investigated.The coating morphology and structure were characterized using SEM and contact profilometry and X-ray diffractometry,respectively.Mechanical properties were studied by nanoindentation.The friction and wear properties of the coatings were investigated by ball-on-disk tribometer.An increase in nitrogen pressure during coating deposition results in phase transformation according to the relation Cr2N→Cr2N+CrN→CrN.The roughness of the coatings deposited on the front side of the substrate is higher than that on the back side,mainly due to larger number of macroparticles.The hardness and elastic modulus are also higher on the front side of the substrate.The adhesion and wear rate of the coatings have an inverse relationship.
基金Funded by the "863" Hi-Tech Project of China(No.2009AA05Z440)
文摘TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical properties (absorptance and emittance) of the coatings were measured by a spectrophotometer. It was found that, after being annealed for 2 hours at different temperatures, the absorptance of the coatings reached the highest value of 0.92 at 700 ℃ while the emittance got the lowest value of 0.38 at 800 ℃. When the coatings were annealed at 600 ℃ for 24 hours, the optical properties changed to 0.92/0.44 (absorptance/ emittance). By measuring the structure, morphology, elements and surface roughness of the coatings, it was found that both the elemental composition and the surface roughness of the coatings changed as a result of annealing, and these changes caused the change of the optical properties of the coatings.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51775560).
文摘CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.