When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is...When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.展开更多
When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and ...When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network. We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory. Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.展开更多
地面核磁共振(surface nuclear magnetic resonance,SNMR)技术是一种可直接定性定量探测地下水的非侵害式地球物理方法,已广泛应用于资源勘探、地质灾害预警和环境检测等方面。但在实际应用中,复杂的环境噪声导致微弱的SNMR信号常常被淹...地面核磁共振(surface nuclear magnetic resonance,SNMR)技术是一种可直接定性定量探测地下水的非侵害式地球物理方法,已广泛应用于资源勘探、地质灾害预警和环境检测等方面。但在实际应用中,复杂的环境噪声导致微弱的SNMR信号常常被淹没,很难获取有效的SNMR信号。针对这一问题,本文提出了一种基于差分结构的SNMR数据噪声压制技术,采用两个接收线圈等距设置在发射线圈上下位置。这种分布可以实时抵消大部分环境噪声以及消除收发线圈耦合影响。理论建模和仿真结果验证了新方法能够有效压制噪声,并可靠获取到早期自由感应衰减(free induction decay,FID)信号。展开更多
针对当前的有源消弧方法因谐波电流检测精度不足而效果较差,以及传统消弧线圈在谐波影响下容易导致消弧失败的问题,设计了一种无须谐波检测便可有效抑制故障点残流中谐波分量的新型消弧线圈。该消弧线圈由逆变器并联传统消弧线圈构成,...针对当前的有源消弧方法因谐波电流检测精度不足而效果较差,以及传统消弧线圈在谐波影响下容易导致消弧失败的问题,设计了一种无须谐波检测便可有效抑制故障点残流中谐波分量的新型消弧线圈。该消弧线圈由逆变器并联传统消弧线圈构成,其中逆变器的指令电压根据中性点电位进行调整,可使逆变器支路不产生基波电流;逆变器的低谐波阻抗特性可有效降低故障点残流中的谐波分量;同时传统消弧线圈过补偿可抵消电容电流。经过Matlab和PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including direct current)仿真,结果显示新型消弧线圈将故障点处的5次谐波、7次谐波分别由25.62、65.85 A降低到了0.11、0.57 A,能够实现可靠消弧。该研究在配电网消弧领域具有一定的应用前景。展开更多
A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequen...A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about I kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed.展开更多
文摘When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.
文摘When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network. We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory. Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.
文摘针对当前的有源消弧方法因谐波电流检测精度不足而效果较差,以及传统消弧线圈在谐波影响下容易导致消弧失败的问题,设计了一种无须谐波检测便可有效抑制故障点残流中谐波分量的新型消弧线圈。该消弧线圈由逆变器并联传统消弧线圈构成,其中逆变器的指令电压根据中性点电位进行调整,可使逆变器支路不产生基波电流;逆变器的低谐波阻抗特性可有效降低故障点残流中的谐波分量;同时传统消弧线圈过补偿可抵消电容电流。经过Matlab和PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including direct current)仿真,结果显示新型消弧线圈将故障点处的5次谐波、7次谐波分别由25.62、65.85 A降低到了0.11、0.57 A,能够实现可靠消弧。该研究在配电网消弧领域具有一定的应用前景。
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2009GB101005)
文摘A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about I kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed.