With the continuous development of society,the gradual improvement of mechanical automation technology has been introduced into the production of many enterprises in China,which has had a great impact on the increase ...With the continuous development of society,the gradual improvement of mechanical automation technology has been introduced into the production of many enterprises in China,which has had a great impact on the increase of China′s gross national product.Applying mechanical automation technology greatly saves labor cost,improves working efficiency and the production level of enterprises,effectively promotes the development of enterprises,and increases the enterprise′s income.In addition,mechanical automation technology is closely related to product production⁃related technology and plays a very important role in the innovation of enterprise products.This article will briefly introduce the design and application of automation technology in welding seam welding design,and understand the development background,research status,current application and simulation design.展开更多
In the robotic welding process with thick steel plates,laser vision sensors are widely used to profile the weld seam to implement automatic seam tracking.The weld seam profile extraction(WSPE)result is a crucial step ...In the robotic welding process with thick steel plates,laser vision sensors are widely used to profile the weld seam to implement automatic seam tracking.The weld seam profile extraction(WSPE)result is a crucial step for identifying the feature points of the extracted profile to guide the welding torch in real time.The visual information processing system may collapse when interference data points in the image survive during the phase of feature point identification,which results in low tracking accuracy and poor welding quality.This paper presents a visual attention featurebased method to extract the weld seam profile(WSP)from the strong arc background using clustering results.First,a binary image is obtained through the preprocessing stage.Second,all data points with a gray value 255 are clustered with the nearest neighborhood clustering algorithm.Third,a strategy is developed to discern one cluster belonging to the WSP from the appointed candidate clusters in each loop,and a scheme is proposed to extract the entire WSP using visual continuity.Compared with the previous methods the proposed method in this paper can extract more useful details of the WSP and has better stability in terms of removing the interference data.Considerable WSPE tests with butt joints and T-joints show the anti-interference ability of the proposed method,which contributes to smoothing the welding process and shows its practical value in robotic automated welding with thick steel plates.展开更多
A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning...A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type V groove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently.展开更多
Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking ...Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.展开更多
A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us...A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.展开更多
Tandem gas metal arc welding ( T-GMAW) process shows a high deposition rate that up to three times o f the single electrode GMAW, so the welding speed could be significantly increased in this process. H...Tandem gas metal arc welding ( T-GMAW) process shows a high deposition rate that up to three times o f the single electrode GMAW, so the welding speed could be significantly increased in this process. However, the majority o f this process applications are based on the pre-programmed robotic welding, which does not allow them to track the seam real-time during welding. Rotating arc sensor, sensing the seam position by detecting the changing of welding currents, has been widely adopted in the automatic robot welding process. It is proposed in this paper to integrate the rotating arc sensor with a trailing torch to develop a new approach of rotating arc lead tandem gas metal arc welding (RLT-GMAW) process. The characteristics of the welding currents in the proposed new welding process were firstly studied, and then a self-turning fuzzy control seam tracking strategy was developed for the mobile robot automatic welding. The experimental results showed that the proposed RLT-GMAW process had an excellent seam tracking performance and high welding deposition rate. Even if there were some electromagnetic interactions between the two arcs, the deviation of the welding seam could also be reflected by the fluctuation of the welding currents on the leading arc once the correct welding parameters were selected. Based on the detected deviation, the welding tracking experiments showed that the proposed self-turning fuzzy controller had a good performance for the RLT-GMAW process seam tracking.展开更多
Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for...Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for image segmentation and stripe laser image was gotten after refining. Weld seam center position was identified and extracted by extreme curvature corner detection method. The location of torch was detected to accord the frequency of computer program with robot program and serial communication program. The tracking experiments of sidelong, reflex and curve weld line show that the system can meet the demand of the tracking precision under normal welding conditions.展开更多
To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy con...To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy controller and a fuzzy-Gaussian neural network(FGNN) controller were designed to complete coordinately controlling of cross-slider and wheels.The fuzzy-neural control algorithm was described by applying the Gaussian function and back propagation(BP) learning rule was used to tune the membership function in real time by applying the FGNN controller.To make the tracking more quickly and smoothly,the neural network controller based on dynamic model was designed,which utilized self-learning and self-adaptive ability of the neural network to deal with the partial uncertainty and the disturbances of the parameters of the robot dynamic model and real-time compensate the dynamics coupling.The results show that the selected control input torques make the system globally and asymptotically stable based on the Lyapunov function selected out;the accuracy of the proposed controller tracing is within ±0.4 mm and can satisfy the requirements of practical welding project.展开更多
This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It ...This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.展开更多
The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch i...The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.展开更多
Weld seam deviation prediction is the key to weld seam tracking control, which is of great significance for realizing welding automation and ensuring welding quality. Aiming at the problem of weld seam deviation predi...Weld seam deviation prediction is the key to weld seam tracking control, which is of great significance for realizing welding automation and ensuring welding quality. Aiming at the problem of weld seam deviation prediction in GMAW</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(gas metal arc welding), a method of weld seam deviation prediction based on arc sound signal is proposed. By analyzing the feature of the arc sound signal waveform, the time domain feature of the arc sound signal is extracted. The wavelet packet analysis method is used to analyze the time-fre</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">quency domain feature of the arc sound signal, and the wavelet packet energy feature </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> extracted. The time domain feature and wavelet packet energy feature are used to establish the feature vector, and the BP (back propagation) neural network is used to realize the weld seam deviation prediction. The results show that the method proposed in this paper has a good weld seam deviation prediction effect, with a mean absolute error of 0.234</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">mm, which provides a new method for GMAW weld seam recognition.展开更多
Titanium alloy lap joints were performed by combined laser welding and resistance seam welding process. The welding characteristics of this combined process were investigated compared with that of laser welding. The e...Titanium alloy lap joints were performed by combined laser welding and resistance seam welding process. The welding characteristics of this combined process were investigated compared with that of laser welding. The experimental results indicate that the combined process welded joint has larger weld width at the lap surface. The joint tensile shear force of combined process is 2. 5 times that of laser welding. There are some pores around the lap surface in laser welded joint, and most pores can be eliminated by resistance seam welding process. Metallographic examinations of combined process welded joint reveal that the microstructure in heat-affected zone (HAZ) and weld zone has the acicular martensite morphology, which causes that the microhardness in HAZ and weld zone increases compared with the base metal, and the microhardness in weld zone is highest.展开更多
According to the requirements of Queensland Gas Company Ltd. (QGC), the operator of the Queensland Curtis LNG (QCLNG) pipeline project in Australia, girth welding experiments and weldability evaluations have been ...According to the requirements of Queensland Gas Company Ltd. (QGC), the operator of the Queensland Curtis LNG (QCLNG) pipeline project in Australia, girth welding experiments and weldability evaluations have been carded out for three X70 UOE pipes from Baosteel based on API 1104 standards. Shielded metal arc welding (SMAW) and gas- shielded flux-cored wire arc welding (FCAW-G) have been applied, and the girth weld joint quality and mechanical performance were evaluated. It was found that the field girth weldability of Baosteel' s XT0 UOE pipes was excellent under the conditions used here and satisfied the requirements of the QCLNG project for field girth welding construction. Furthermore,Baosteel has offered a solution to the QCLNG project for pipeline girth welding in which the girth welding joint design, selection of welding processes and consumables, welding procedures, techniques and joint inspections are included. Such research provides important guidance for the difficult tie-in welding applications for the construction of the QCLNG pipelines in the field.展开更多
The characteristics of X-ray testing image are analyzed and improved competitive fuzzy edge detection is described. This algorithm takes into account maximizing objective function to estimate the edge intensity at fir...The characteristics of X-ray testing image are analyzed and improved competitive fuzzy edge detection is described. This algorithm takes into account maximizing objective function to estimate the edge intensity at first. Then, according to the new edge patterns, learning vector quantization neural network is applied to each edge pixel according to its assigned class. At last the thinning algorithms is run to get the one-pixel wide edge image. Experimental results show that the proposed method can better improve the efficiency of weld seam image processing.展开更多
For reasons of the vibration of robot, the rough surface of weld seam and electromagnetic disturbance of welding machine, the force signals of identifying weld seam become unstable. The position error of remote teachi...For reasons of the vibration of robot, the rough surface of weld seam and electromagnetic disturbance of welding machine, the force signals of identifying weld seam become unstable. The position error of remote teaching point is too big to meet teaching requirements in remote welding. The force signals of identifying weld seam can be filtered by Kalman. The force signals of identifying weld seam of next teaching point is accurately predicted according to predicting algorithms, such as the equation of the state, the equation of the observation, the gain matrix of the filter and the covariance matrix of predicting state. The experimental results show that the precision of identifying weld seam is improved by Kalman.filter.展开更多
In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from th...In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.展开更多
Weld seam inflection points are inevitable in tele-teaching process on many welding occasions. The inflection points identified accurately is one of the prerequisites of ensuring tele-teaching precision. On the basis ...Weld seam inflection points are inevitable in tele-teaching process on many welding occasions. The inflection points identified accurately is one of the prerequisites of ensuring tele-teaching precision. On the basis of the inflection point characters, the concept of inflection point direction coefficient is proposed, the human-simulation intelligent control model of inflection point is established. The algorithms above, the inflection point identifying of box workpiece can be well performed. The experimental results show that the identifying average error of inflection point can be reduced to less than O. 5 mm by using optimal treatment of robot off-line programming system. The identifying control can automatically identify weld seam inflection points which can meet tele-teaching requirements.展开更多
This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing th...This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing the geometry and dimensions of the cam controlling the moving locus of the welding torch have been derived. This welding machine has successfully been used in automatic welding saddle joint seams on boiler drums with good results and low cost.展开更多
Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detect...Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detector and Hough transformation function, and especially the thresholds for image processing are ore aled adaptively by Ineans of a neural network. aests proved that this algorithm has a high reliability and rapidity in distinguishing the position of weld seam even with noises. The algorithm can be used ac the basic program .for robot to track welding seam and furthermore for calculating 3 dimensional information plan robot movement automatically.展开更多
It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency compon...It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency component was separated by Gaussian filter from origin image, and then it is processed by improved local contrast enhancement(LCE) algorithm to enhance the edge information. Secondly, the gamma transform with adaptive parameters was used to strengthen the image brightness, furthermore, contrast limited adaptive histogram equalization(CLAHE) algorithm was applied to enhance the image contrast. Finally, the two manipulated images were integrated together to obtain the desired image. Experiments on typical images were carried out, and evaluation results showed that this designed algorithm can effectively improve image contrast, highlight welding seam information. Moreover, the image average grey value was moderate, and the information entropy and average gradient were much higher than other algorithms.展开更多
文摘With the continuous development of society,the gradual improvement of mechanical automation technology has been introduced into the production of many enterprises in China,which has had a great impact on the increase of China′s gross national product.Applying mechanical automation technology greatly saves labor cost,improves working efficiency and the production level of enterprises,effectively promotes the development of enterprises,and increases the enterprise′s income.In addition,mechanical automation technology is closely related to product production⁃related technology and plays a very important role in the innovation of enterprise products.This article will briefly introduce the design and application of automation technology in welding seam welding design,and understand the development background,research status,current application and simulation design.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575349,51665037,51575348)State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2016KF002).
文摘In the robotic welding process with thick steel plates,laser vision sensors are widely used to profile the weld seam to implement automatic seam tracking.The weld seam profile extraction(WSPE)result is a crucial step for identifying the feature points of the extracted profile to guide the welding torch in real time.The visual information processing system may collapse when interference data points in the image survive during the phase of feature point identification,which results in low tracking accuracy and poor welding quality.This paper presents a visual attention featurebased method to extract the weld seam profile(WSP)from the strong arc background using clustering results.First,a binary image is obtained through the preprocessing stage.Second,all data points with a gray value 255 are clustered with the nearest neighborhood clustering algorithm.Third,a strategy is developed to discern one cluster belonging to the WSP from the appointed candidate clusters in each loop,and a scheme is proposed to extract the entire WSP using visual continuity.Compared with the previous methods the proposed method in this paper can extract more useful details of the WSP and has better stability in terms of removing the interference data.Considerable WSPE tests with butt joints and T-joints show the anti-interference ability of the proposed method,which contributes to smoothing the welding process and shows its practical value in robotic automated welding with thick steel plates.
基金This work was supported by the National High Technology Research and Development Program of China under Grant 2002AA422160 by the National Key Fundamental Research and the Devel-opment Project of China (973) under Grant 2002CB312200.
文摘A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type V groove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently.
基金supported by National Hi-tech Research and Development Program of China(863 program, Grant No. 2002AA602012)National Natural Science Foundation of China(Grant No. 40776054)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality of China
文摘Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.
基金supported by the National Natural Science Foundation of China(51605251)Tsinghua University Initiative Scientific Research Program(2014Z05093).
文摘A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.
基金supported by the National Natural Science Foundation of China(Grant No.51465043)
文摘Tandem gas metal arc welding ( T-GMAW) process shows a high deposition rate that up to three times o f the single electrode GMAW, so the welding speed could be significantly increased in this process. However, the majority o f this process applications are based on the pre-programmed robotic welding, which does not allow them to track the seam real-time during welding. Rotating arc sensor, sensing the seam position by detecting the changing of welding currents, has been widely adopted in the automatic robot welding process. It is proposed in this paper to integrate the rotating arc sensor with a trailing torch to develop a new approach of rotating arc lead tandem gas metal arc welding (RLT-GMAW) process. The characteristics of the welding currents in the proposed new welding process were firstly studied, and then a self-turning fuzzy control seam tracking strategy was developed for the mobile robot automatic welding. The experimental results showed that the proposed RLT-GMAW process had an excellent seam tracking performance and high welding deposition rate. Even if there were some electromagnetic interactions between the two arcs, the deviation of the welding seam could also be reflected by the fluctuation of the welding currents on the leading arc once the correct welding parameters were selected. Based on the detected deviation, the welding tracking experiments showed that the proposed self-turning fuzzy controller had a good performance for the RLT-GMAW process seam tracking.
基金supported by National Natural Science Foundation of China No. 50705030Guangdong Province Foundation of No.0133002
文摘Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for image segmentation and stripe laser image was gotten after refining. Weld seam center position was identified and extracted by extreme curvature corner detection method. The location of torch was detected to accord the frequency of computer program with robot program and serial communication program. The tracking experiments of sidelong, reflex and curve weld line show that the system can meet the demand of the tracking precision under normal welding conditions.
基金Project(2007309) supported by the Scientific Research Project of Hebei Provincial Education Office,ChinaProject(2007AA04Z209) supported by the National High-Tech Research and Development Program of China
文摘To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy controller and a fuzzy-Gaussian neural network(FGNN) controller were designed to complete coordinately controlling of cross-slider and wheels.The fuzzy-neural control algorithm was described by applying the Gaussian function and back propagation(BP) learning rule was used to tune the membership function in real time by applying the FGNN controller.To make the tracking more quickly and smoothly,the neural network controller based on dynamic model was designed,which utilized self-learning and self-adaptive ability of the neural network to deal with the partial uncertainty and the disturbances of the parameters of the robot dynamic model and real-time compensate the dynamics coupling.The results show that the selected control input torques make the system globally and asymptotically stable based on the Lyapunov function selected out;the accuracy of the proposed controller tracing is within ±0.4 mm and can satisfy the requirements of practical welding project.
文摘This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.
文摘The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.
文摘Weld seam deviation prediction is the key to weld seam tracking control, which is of great significance for realizing welding automation and ensuring welding quality. Aiming at the problem of weld seam deviation prediction in GMAW</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(gas metal arc welding), a method of weld seam deviation prediction based on arc sound signal is proposed. By analyzing the feature of the arc sound signal waveform, the time domain feature of the arc sound signal is extracted. The wavelet packet analysis method is used to analyze the time-fre</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">quency domain feature of the arc sound signal, and the wavelet packet energy feature </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> extracted. The time domain feature and wavelet packet energy feature are used to establish the feature vector, and the BP (back propagation) neural network is used to realize the weld seam deviation prediction. The results show that the method proposed in this paper has a good weld seam deviation prediction effect, with a mean absolute error of 0.234</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">mm, which provides a new method for GMAW weld seam recognition.
文摘Titanium alloy lap joints were performed by combined laser welding and resistance seam welding process. The welding characteristics of this combined process were investigated compared with that of laser welding. The experimental results indicate that the combined process welded joint has larger weld width at the lap surface. The joint tensile shear force of combined process is 2. 5 times that of laser welding. There are some pores around the lap surface in laser welded joint, and most pores can be eliminated by resistance seam welding process. Metallographic examinations of combined process welded joint reveal that the microstructure in heat-affected zone (HAZ) and weld zone has the acicular martensite morphology, which causes that the microhardness in HAZ and weld zone increases compared with the base metal, and the microhardness in weld zone is highest.
文摘According to the requirements of Queensland Gas Company Ltd. (QGC), the operator of the Queensland Curtis LNG (QCLNG) pipeline project in Australia, girth welding experiments and weldability evaluations have been carded out for three X70 UOE pipes from Baosteel based on API 1104 standards. Shielded metal arc welding (SMAW) and gas- shielded flux-cored wire arc welding (FCAW-G) have been applied, and the girth weld joint quality and mechanical performance were evaluated. It was found that the field girth weldability of Baosteel' s XT0 UOE pipes was excellent under the conditions used here and satisfied the requirements of the QCLNG project for field girth welding construction. Furthermore,Baosteel has offered a solution to the QCLNG project for pipeline girth welding in which the girth welding joint design, selection of welding processes and consumables, welding procedures, techniques and joint inspections are included. Such research provides important guidance for the difficult tie-in welding applications for the construction of the QCLNG pipelines in the field.
文摘The characteristics of X-ray testing image are analyzed and improved competitive fuzzy edge detection is described. This algorithm takes into account maximizing objective function to estimate the edge intensity at first. Then, according to the new edge patterns, learning vector quantization neural network is applied to each edge pixel according to its assigned class. At last the thinning algorithms is run to get the one-pixel wide edge image. Experimental results show that the proposed method can better improve the efficiency of weld seam image processing.
文摘For reasons of the vibration of robot, the rough surface of weld seam and electromagnetic disturbance of welding machine, the force signals of identifying weld seam become unstable. The position error of remote teaching point is too big to meet teaching requirements in remote welding. The force signals of identifying weld seam can be filtered by Kalman. The force signals of identifying weld seam of next teaching point is accurately predicted according to predicting algorithms, such as the equation of the state, the equation of the observation, the gain matrix of the filter and the covariance matrix of predicting state. The experimental results show that the precision of identifying weld seam is improved by Kalman.filter.
文摘In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.
文摘Weld seam inflection points are inevitable in tele-teaching process on many welding occasions. The inflection points identified accurately is one of the prerequisites of ensuring tele-teaching precision. On the basis of the inflection point characters, the concept of inflection point direction coefficient is proposed, the human-simulation intelligent control model of inflection point is established. The algorithms above, the inflection point identifying of box workpiece can be well performed. The experimental results show that the identifying average error of inflection point can be reduced to less than O. 5 mm by using optimal treatment of robot off-line programming system. The identifying control can automatically identify weld seam inflection points which can meet tele-teaching requirements.
文摘This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing the geometry and dimensions of the cam controlling the moving locus of the welding torch have been derived. This welding machine has successfully been used in automatic welding saddle joint seams on boiler drums with good results and low cost.
文摘Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detector and Hough transformation function, and especially the thresholds for image processing are ore aled adaptively by Ineans of a neural network. aests proved that this algorithm has a high reliability and rapidity in distinguishing the position of weld seam even with noises. The algorithm can be used ac the basic program .for robot to track welding seam and furthermore for calculating 3 dimensional information plan robot movement automatically.
基金Project was supported by the National Science Foundation of China(Grant No.51665016)。
文摘It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency component was separated by Gaussian filter from origin image, and then it is processed by improved local contrast enhancement(LCE) algorithm to enhance the edge information. Secondly, the gamma transform with adaptive parameters was used to strengthen the image brightness, furthermore, contrast limited adaptive histogram equalization(CLAHE) algorithm was applied to enhance the image contrast. Finally, the two manipulated images were integrated together to obtain the desired image. Experiments on typical images were carried out, and evaluation results showed that this designed algorithm can effectively improve image contrast, highlight welding seam information. Moreover, the image average grey value was moderate, and the information entropy and average gradient were much higher than other algorithms.