A new method is put forward for structural damage identification based on the homotopy continuation algorithm. A numerical example is presented to verify the method. The beams with different damage locations and diffe...A new method is put forward for structural damage identification based on the homotopy continuation algorithm. A numerical example is presented to verify the method. The beams with different damage locations and different damage extents are identified by this method. The numerical examples have proved that this new method is capable of easy convergence, which is not sensitive to the initial iterative values. It is effective for accurately identifying multiple damages. By incorporating the finite element method into the homotopy continuation algorithm, the damage identifying ability of the new method can be greatly enhanced.展开更多
As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many o...As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.展开更多
Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithm...Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (?t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.展开更多
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set shoul...Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set should have high sensitivity to target parameters but low information redundancy among features.However, feature-selection methods that satisfy both requirements are lacking. To address this issue,in this study, a novel method, the continuous wavelet projections algorithm(CWPA), was developed,which has advantages of both continuous wavelet analysis(CWA) and the successive projections algorithm(SPA) for generating optimal spectral feature set for crop detection. Three datasets collected for crop stress detection and retrieval of biochemical properties were used to validate the CWPA under both classification and regression scenarios. The CWPA generated a feature set with fewer features yet achieving accuracy comparable to or even higher than those of CWA and SPA. With only two to three features identified by CWPA, an overall accuracy of 98% in classifying tea plant stresses was achieved, and high coefficients of determination were obtained in retrieving corn leaf chlorophyll content(R^(2)= 0.8521)and equivalent water thickness(R^(2)= 0.9508). The mechanism of the CWPA ensures that the novel algorithm discovers the most sensitive features while retaining complementarity among features. Its ability to reduce the data dimension suggests its potential for crop monitoring and phenotyping with hyperspectral data.展开更多
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen...A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.展开更多
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ...In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.展开更多
Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classic...Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.展开更多
Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implemen...Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi\|objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum\|niche count is designed for finding near\|Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.展开更多
A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expa...A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expansion, a new type of the generalized inverse matrix valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.展开更多
We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, whi...We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, which we used to simulate the coupling constant hierarchy for the universe with five fundamental interactions. Moreover, we can explicitly compute the integer Laplacian block matrix associated with any tree plumbing graph. This matrix coincides up to sign with the integer linking matrix (the main topological invariant) of the graph manifold corresponding to the plumbing graph. The need for a special algorithm appeared during computations of these topological invariants of complicated graph manifolds since there emerged a set of special rational numbers (fractions) with huge numerators and denominators;for these rational numbers, the ordinary methods of expansion in continued fraction became unusable.展开更多
If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a spec...If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a special numerical algorithm based on wavelets to study the L p continuity of non infinite smooth operators OpS m 0 , 0 ; in fact, we apply first special wavelets to symbol to get special basic operators, then we regroup all the special basic operators at given scale and prove that such scale operator’s continuity decreases very fast, we sum such scale operators and a symbol operator can be approached by very good compact operators. By correlation of basic operators, we get very exact pseudo-orthogonality and also L 2 → L 2 continuity for scale operators. By considering the influence region of scale operator, we get H 1 (= F 0 , 2 1 ) → L 1 continuity and L ∞→ BMO continuity. By interpolation theorem, we get also L p (= F 0 , 2 p ) → L p continuity for 1 〈 p 〈 ∞ . Our results are sharp for F 0 , 2 p → L p continuity when 1 ≤ p ≤ 2, that is to say, we find out the exact order of derivations for which the symbols can ensure the resulting operators to be bounded on these spaces.展开更多
The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is ...The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification,which can compress the input or feature space and suppress the growth of the radial basis function(RBF)structure in the kernel learning algorithm.To verify the effectiveness of the algorithm,it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration.In additiion,the proposed algorithm is further compared with least squares support vector machine(LS-SVM),echo state network(ESN),extreme learning machine with kernels(KELM),etc.The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions.展开更多
A kind of triple branched continued fractions is defined by making use of Samel- son inverse and Thiele-type partial inverted di?erences [1]. In this paper, a levels-recursive algorithm is constructed and a numerical ...A kind of triple branched continued fractions is defined by making use of Samel- son inverse and Thiele-type partial inverted di?erences [1]. In this paper, a levels-recursive algorithm is constructed and a numerical example is given.展开更多
The progressive and mixing algorithm(PAMA) is a method for surface modeling and editing,which is developed for effective and flexible applications in many environments,such as computer-aided design(CAD) and computer-a...The progressive and mixing algorithm(PAMA) is a method for surface modeling and editing,which is developed for effective and flexible applications in many environments,such as computer-aided design(CAD) and computer-aided geometric design(CAGD).In this paper,the construction scheme and continuities of PAMA are discussed,which provide a mathematics analysis of PAMA.The analysis and results show that the PAMA provides a new method of surface modeling and editing with four more degrees of freedom for designers to manipulate a 3D object.展开更多
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use...A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
The development of some computational algorithms based on cellular automaton was described to simulate the structures formed during the solidification of steel products.The algorithms described take results from the s...The development of some computational algorithms based on cellular automaton was described to simulate the structures formed during the solidification of steel products.The algorithms described take results from the steel thermal behavior and heat removal previously calculated using a simulator developed by present authors in a previous work.Stored time is used for displaying the steel transition from liquid to mushy and solid.And it is also used to command computational subroutines that reproduce nucleation and grain growth.These routines are logically programmed using the programming language C++ and are based on a simultaneous solution of numerical methods (stochastic and deterministic) to create a graphical representation of different grain structures formed.The grain structure obtained is displayed on the computer screen using a graphical user interface (GUI).The chaos theory and random generation numbers are included in the algorithms to simulate the heterogeneity of grain sizes and morphologies.展开更多
The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the re...The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.展开更多
基金Project supported by the National Natural Science Foundation of China (No.50238040).
文摘A new method is put forward for structural damage identification based on the homotopy continuation algorithm. A numerical example is presented to verify the method. The beams with different damage locations and different damage extents are identified by this method. The numerical examples have proved that this new method is capable of easy convergence, which is not sensitive to the initial iterative values. It is effective for accurately identifying multiple damages. By incorporating the finite element method into the homotopy continuation algorithm, the damage identifying ability of the new method can be greatly enhanced.
基金Supported by National Natural Science Foundation of China (No.10871144)the Seed Foundation of Tianjin University (No.60302023)
文摘As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.
文摘Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (?t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
基金supported by the National Natural Science Foundation of China (42071420)the Major Special Project for 2025 Scientific,Technological Innovation (Major Scientific and Technological Task Project in Ningbo City)(2021Z048)the National Key Research and Development Program of China(2019YFE0125300)。
文摘Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set should have high sensitivity to target parameters but low information redundancy among features.However, feature-selection methods that satisfy both requirements are lacking. To address this issue,in this study, a novel method, the continuous wavelet projections algorithm(CWPA), was developed,which has advantages of both continuous wavelet analysis(CWA) and the successive projections algorithm(SPA) for generating optimal spectral feature set for crop detection. Three datasets collected for crop stress detection and retrieval of biochemical properties were used to validate the CWPA under both classification and regression scenarios. The CWPA generated a feature set with fewer features yet achieving accuracy comparable to or even higher than those of CWA and SPA. With only two to three features identified by CWPA, an overall accuracy of 98% in classifying tea plant stresses was achieved, and high coefficients of determination were obtained in retrieving corn leaf chlorophyll content(R^(2)= 0.8521)and equivalent water thickness(R^(2)= 0.9508). The mechanism of the CWPA ensures that the novel algorithm discovers the most sensitive features while retaining complementarity among features. Its ability to reduce the data dimension suggests its potential for crop monitoring and phenotyping with hyperspectral data.
基金project supported by the National High-Technology Research and Development Program of China(Grant No.8632005AA642010)
文摘A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
基金Project of China Postdoctoral Science Foundation,China (No. 2012M510982)Special Fund on the Science and Technology Innovation People of Harbin,China (No. 2011RFQXG002)+2 种基金Technology Item of Heilongjiang Provincial Education Committee,China (No.12511088)Postdoctoral Project of Heilongjiang,China (No. LBH-Z10117 )Youth Fund of Harbin University of Science and Technology,China (No. 2011YF030)
文摘In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504024,61502041,61602045 and 61602046the National Key Research and Development Program of China under Grant No 2016YFA0302600
文摘Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.
基金TheNationNaturalScienceFoundationofChina (No .6 9974 0 34)
文摘Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi\|objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum\|niche count is designed for finding near\|Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.
文摘A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expansion, a new type of the generalized inverse matrix valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.
文摘We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, which we used to simulate the coupling constant hierarchy for the universe with five fundamental interactions. Moreover, we can explicitly compute the integer Laplacian block matrix associated with any tree plumbing graph. This matrix coincides up to sign with the integer linking matrix (the main topological invariant) of the graph manifold corresponding to the plumbing graph. The need for a special algorithm appeared during computations of these topological invariants of complicated graph manifolds since there emerged a set of special rational numbers (fractions) with huge numerators and denominators;for these rational numbers, the ordinary methods of expansion in continued fraction became unusable.
基金Supported by the Doctoral programme foundation of National Education Ministry of China
文摘If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a special numerical algorithm based on wavelets to study the L p continuity of non infinite smooth operators OpS m 0 , 0 ; in fact, we apply first special wavelets to symbol to get special basic operators, then we regroup all the special basic operators at given scale and prove that such scale operator’s continuity decreases very fast, we sum such scale operators and a symbol operator can be approached by very good compact operators. By correlation of basic operators, we get very exact pseudo-orthogonality and also L 2 → L 2 continuity for scale operators. By considering the influence region of scale operator, we get H 1 (= F 0 , 2 1 ) → L 1 continuity and L ∞→ BMO continuity. By interpolation theorem, we get also L p (= F 0 , 2 p ) → L p continuity for 1 〈 p 〈 ∞ . Our results are sharp for F 0 , 2 p → L p continuity when 1 ≤ p ≤ 2, that is to say, we find out the exact order of derivations for which the symbols can ensure the resulting operators to be bounded on these spaces.
基金National Natural Science Foundation of China(No.51467008)Scientific Research Projects of Colleges and Universities in Gansu Province(Nos.2018C-10,2017D-09)。
文摘The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification,which can compress the input or feature space and suppress the growth of the radial basis function(RBF)structure in the kernel learning algorithm.To verify the effectiveness of the algorithm,it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration.In additiion,the proposed algorithm is further compared with least squares support vector machine(LS-SVM),echo state network(ESN),extreme learning machine with kernels(KELM),etc.The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions.
基金Supported by the National Natural Science Foundation of China under Grant No. 10171026.
文摘A kind of triple branched continued fractions is defined by making use of Samel- son inverse and Thiele-type partial inverted di?erences [1]. In this paper, a levels-recursive algorithm is constructed and a numerical example is given.
基金the 2009 Excellent Going Abroad Experts Training Program in Hebei Province,China(No.[2010]76)
文摘The progressive and mixing algorithm(PAMA) is a method for surface modeling and editing,which is developed for effective and flexible applications in many environments,such as computer-aided design(CAD) and computer-aided geometric design(CAGD).In this paper,the construction scheme and continuities of PAMA are discussed,which provide a mathematics analysis of PAMA.The analysis and results show that the PAMA provides a new method of surface modeling and editing with four more degrees of freedom for designers to manipulate a 3D object.
文摘A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
文摘The development of some computational algorithms based on cellular automaton was described to simulate the structures formed during the solidification of steel products.The algorithms described take results from the steel thermal behavior and heat removal previously calculated using a simulator developed by present authors in a previous work.Stored time is used for displaying the steel transition from liquid to mushy and solid.And it is also used to command computational subroutines that reproduce nucleation and grain growth.These routines are logically programmed using the programming language C++ and are based on a simultaneous solution of numerical methods (stochastic and deterministic) to create a graphical representation of different grain structures formed.The grain structure obtained is displayed on the computer screen using a graphical user interface (GUI).The chaos theory and random generation numbers are included in the algorithms to simulate the heterogeneity of grain sizes and morphologies.
基金supported by the National Natural Science Foundation of China(Grants No.11361002 and 91230111)the Natural Science Foundation of Ningxia,China(Grant No.NZ13086)+1 种基金the Project of Beifang University of Nationalities,China(Grant No.2012XZK05)the Foreign Expert Project of Beifang University of Nationalities,China,and the Visiting Scholar Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,China(Grant No.2013A011)
文摘The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-e model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases.