In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p...In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.展开更多
To evaluate the trapped wave energy and energy loss, the problem of wave scattering by twin fixed vertical surface- piercing plates over a stepped bottom is numerically simulated using the open source package OpenFOAM...To evaluate the trapped wave energy and energy loss, the problem of wave scattering by twin fixed vertical surface- piercing plates over a stepped bottom is numerically simulated using the open source package OpenFOAM and the associated toolbox waves2Foam. The volume of fluid (VOF) method was employed to capture the free surface in the time domain. The validation of the present numerical model was performed by comparing with both the analytical and experimental results. The effects of the spacing between two plates and the configuration of stepped bottom on the hydrodynamic characteristics, such as reflection and transmission coefficients, viscous dissipation ratio, and relative wave height between the plates (termed as trapped wave energy), were examined. Moreover, the nonlinear effects of the incident wave height on the hydrodynamic characteristics were addressed as well. The results show that the step configuration can be tuned for efficient-performance of wave damping, and the optimum configurations of the step length B, the step height h1 and the spacing b, separately equaling λ/4, 3h/4, and 0.05h (λ and h are the wavelength and the water depth, respectively), are recommended for the trapping of wave energy.展开更多
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of ...In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.展开更多
Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
In this paper, the propagation of guided thermoelastic waves in laminated orthotropic plates subjected to stress-free, isothermal boundary conditions is investigated in the context of the Green-Naghdi (GN) generaliz...In this paper, the propagation of guided thermoelastic waves in laminated orthotropic plates subjected to stress-free, isothermal boundary conditions is investigated in the context of the Green-Naghdi (GN) generalized thermoelastic theory (without energy dissipation). The coupled wave equations and heat conduction equation are solved by the Legendre orthogonal polynomial series expansion approach. The validity of the method is confirmed through a comparison. The dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Dispersion curves of the corresponding pure elastic plate are also shown to analyze the influence of the thermoelasticity on elastic modes. The displacement and temperature distributions are shown to discuss the differences between the elastic modes and thermal modes.展开更多
A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibrati...A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too.展开更多
基金Beijing Natural Science Foundation of China under Grant No.8122004the National Natural Science Foundation of China under Grant No.51178010the National Science and Technology Support Program of China under Grant No.2012BAJ13B02
文摘In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11702244,51679014,51809209)the Joint Fund of Zhoushan City and Zhejiang University(Grant No.2017C82223)the Open Fund of Hunan Provincial Key Laboratory of Key Technology on Hydropower Development(Grant No.PKLHD201707)
文摘To evaluate the trapped wave energy and energy loss, the problem of wave scattering by twin fixed vertical surface- piercing plates over a stepped bottom is numerically simulated using the open source package OpenFOAM and the associated toolbox waves2Foam. The volume of fluid (VOF) method was employed to capture the free surface in the time domain. The validation of the present numerical model was performed by comparing with both the analytical and experimental results. The effects of the spacing between two plates and the configuration of stepped bottom on the hydrodynamic characteristics, such as reflection and transmission coefficients, viscous dissipation ratio, and relative wave height between the plates (termed as trapped wave energy), were examined. Moreover, the nonlinear effects of the incident wave height on the hydrodynamic characteristics were addressed as well. The results show that the step configuration can be tuned for efficient-performance of wave damping, and the optimum configurations of the step length B, the step height h1 and the spacing b, separately equaling λ/4, 3h/4, and 0.05h (λ and h are the wavelength and the water depth, respectively), are recommended for the trapping of wave energy.
文摘In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
基金supported by the National Natural Science Foundation of China (No. 10802027)
文摘In this paper, the propagation of guided thermoelastic waves in laminated orthotropic plates subjected to stress-free, isothermal boundary conditions is investigated in the context of the Green-Naghdi (GN) generalized thermoelastic theory (without energy dissipation). The coupled wave equations and heat conduction equation are solved by the Legendre orthogonal polynomial series expansion approach. The validity of the method is confirmed through a comparison. The dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Dispersion curves of the corresponding pure elastic plate are also shown to analyze the influence of the thermoelasticity on elastic modes. The displacement and temperature distributions are shown to discuss the differences between the elastic modes and thermal modes.
基金Project supported by the Programme of Introducing Talents of Discipline to Universities(Grant No.B07018)
文摘A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too.