We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics...We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.展开更多
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
An optically pumped cesium beam frequency standard with bias-saturated absorption lock of laser diodes has been built up at Peking University.The frequency stability of 1.2×10-11/t1/2 was obtained.A new idea of s...An optically pumped cesium beam frequency standard with bias-saturated absorption lock of laser diodes has been built up at Peking University.The frequency stability of 1.2×10-11/t1/2 was obtained.A new idea of sharp angle incidence of probing laser beam has been tested experimentally and fairly good results were achieved.Further improvements are discussed.展开更多
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photol...The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.展开更多
A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods...A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.展开更多
Nonlinear frequency conversion of structured beams has been of great interest recently.We present an intracavity second harmonic generation(SHG)of laser beams in transverse mode locking(TML)states with a specially des...Nonlinear frequency conversion of structured beams has been of great interest recently.We present an intracavity second harmonic generation(SHG)of laser beams in transverse mode locking(TML)states with a specially designed sandwich such as a microchip laser.The intracavity nonlinear frequency conversion process of a laser beam in a TML state to its second harmonic is theoretically and experimentally investigated,considering different relative phase and weight parameters between the basic modes in the TML beam.Comparison between the far-field SHG beam patterns of fundamental frequency transverse modes in coherently locked and incoherently superposed states demonstrates that the SHG of TML beams can carry more information.Various rarely observed far-field SHG beam patterns are obtained,and they are consistent with the theoretical analysis and numerical simulations.With the obtained SHG beams,the characteristics of the structured fundamental frequency beams can also be conversely investigated or predicted.This work may have important applications in optical 3D printing,optical trapping of particles,and free-space optical communication areas.展开更多
The laser cooling of ytterbium(Yb) atoms needs a 399-nm laser which operates on the strong1S0-1P1 transition and can be locked at the desired frequencies for different Yb isotopes.We demonstrate a frequency locking ...The laser cooling of ytterbium(Yb) atoms needs a 399-nm laser which operates on the strong1S0-1P1 transition and can be locked at the desired frequencies for different Yb isotopes.We demonstrate a frequency locking method using the fluorescence spectrum of an Yb atomic beam as a frequency reference.For unresolved fluorescence peaks,we make the spectrum of the even isotopes vanish by using the strong angular-dependence of the fluorescence radiations;the remained closely-spaced peaks are thus clearly resolved and able to serve as accurate frequency references.A computer-controlled servo system is used to lock the laser frequency to a single fluorescence peak of interest,and a frequency stability of 304 kHz is achieved.This frequency-locked laser enables us to realize stable blue magneto-optic-traps(MOT) for all abundant Yb isotopes.展开更多
文摘We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
文摘An optically pumped cesium beam frequency standard with bias-saturated absorption lock of laser diodes has been built up at Peking University.The frequency stability of 1.2×10-11/t1/2 was obtained.A new idea of sharp angle incidence of probing laser beam has been tested experimentally and fairly good results were achieved.Further improvements are discussed.
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No.4112060)the Special Foundation for National Key Scientific Instrument,China (Grant No.2012YQ140005)+5 种基金the Open Fund of High Power Laser Laboratory,China Academy of Engineering Physics (Grant No.2013HEL03)the National Natural Science Foundation of China (Grant No.61274125)the National Basic Research Program,China (Grant No.2010CB327601)the State Key Laboratory on Integrated Optoelectronics Open Project,China (Grant No.2011KFB002)financially supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programmethe financial support through a Royal Academy of Engineering/EPSRC Research Fellowship
文摘The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N27)National Natural Science Foundation of China(Nos.11205153 and 11175176)
文摘A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.
基金the support of the National Natural Science Foundation of China (NSFC) (61805013)
文摘Nonlinear frequency conversion of structured beams has been of great interest recently.We present an intracavity second harmonic generation(SHG)of laser beams in transverse mode locking(TML)states with a specially designed sandwich such as a microchip laser.The intracavity nonlinear frequency conversion process of a laser beam in a TML state to its second harmonic is theoretically and experimentally investigated,considering different relative phase and weight parameters between the basic modes in the TML beam.Comparison between the far-field SHG beam patterns of fundamental frequency transverse modes in coherently locked and incoherently superposed states demonstrates that the SHG of TML beams can carry more information.Various rarely observed far-field SHG beam patterns are obtained,and they are consistent with the theoretical analysis and numerical simulations.With the obtained SHG beams,the characteristics of the structured fundamental frequency beams can also be conversely investigated or predicted.This work may have important applications in optical 3D printing,optical trapping of particles,and free-space optical communication areas.
基金supported by the National Natural Science Foundation of China(Nos.11274349,11204353,and 61227805)the National Key Basic Research and Development Program(973)of China(No.2011CB921503)
文摘The laser cooling of ytterbium(Yb) atoms needs a 399-nm laser which operates on the strong1S0-1P1 transition and can be locked at the desired frequencies for different Yb isotopes.We demonstrate a frequency locking method using the fluorescence spectrum of an Yb atomic beam as a frequency reference.For unresolved fluorescence peaks,we make the spectrum of the even isotopes vanish by using the strong angular-dependence of the fluorescence radiations;the remained closely-spaced peaks are thus clearly resolved and able to serve as accurate frequency references.A computer-controlled servo system is used to lock the laser frequency to a single fluorescence peak of interest,and a frequency stability of 304 kHz is achieved.This frequency-locked laser enables us to realize stable blue magneto-optic-traps(MOT) for all abundant Yb isotopes.