期刊文献+
共找到66,470篇文章
< 1 2 250 >
每页显示 20 50 100
基于SYSWELD的等高齿弧锥齿轮铣刀盘多层焊接数值模拟
1
作者 王志刚 张鑫鹏 《工具技术》 北大核心 2024年第8期123-126,共4页
本文借助Visual-Environment焊接模拟仿真软件,以SYSWELD为求解器对等高齿弧锥齿轮铣刀盘V形坡口多层焊接的焊接温度场进行数值模拟,得到了焊接温度场分布云图,分析并对比了每层焊缝中心、焊趾及距焊缝中心5mm处的温度循环曲线,推导出... 本文借助Visual-Environment焊接模拟仿真软件,以SYSWELD为求解器对等高齿弧锥齿轮铣刀盘V形坡口多层焊接的焊接温度场进行数值模拟,得到了焊接温度场分布云图,分析并对比了每层焊缝中心、焊趾及距焊缝中心5mm处的温度循环曲线,推导出三层焊接温度场公式用于计算验证。结果表明,熔池中心温度最高,距离焊缝中心越近,温度梯度变化越大。 展开更多
关键词 SYSweld 铣刀盘 温度场 多层焊接 V形坡口
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
2
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Frequency Domain Fatigue Evaluation on SCR Girth-Weld Based on Structural Stress 被引量:1
3
作者 ZHANG Long ZHAO Tian-feng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期255-270,共16页
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t... The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR. 展开更多
关键词 SCR girth weld random vibration self(cross)power spectrum structural stress method biaxial fatigue damage
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
4
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Design of Fully Automatic Specification Selection System for Resistance Welding Equipment
5
作者 Xiangkun Lu Zengtai Tian +1 位作者 Hao Xu Yue Guo 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期64-68,共5页
A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding ... A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality. 展开更多
关键词 seat spot welding welding specifications fully automatic
下载PDF
Theoretical analysis of the elastic Kelvin-Helmholtz instability in explosive weldings
6
作者 Yuanbo Sun Jianning Gou +5 位作者 Cheng Wang Qiang Zhou Rui Liu Pengwan Chen Tonghui Yang Xiang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期521-528,共8页
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el... By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations. 展开更多
关键词 Explosive welding Hydrodynamic instabilities ELASTICITY
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
7
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
8
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
A review of linear friction welding of Ni -based superalloys
9
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 Ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu
10
作者 Dingyi Jin Guo Wei 《Computers, Materials & Continua》 SCIE EI 2024年第6期3455-3468,共14页
To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,... To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters. 展开更多
关键词 Atomic diffusion behavior molecular dynamics collision welding
下载PDF
Beam oscillating parameters on pore inhibition,recrystallization and grain boundary characteristics of laser-arc hybrid welded AZ31 magnesium alloy
11
作者 Kangda Hao Yongkang Gao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjin Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2489-2502,共14页
Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv... Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding Beam oscillation RECRYSTALLIZATION Mechanical properties
下载PDF
Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy
12
作者 Yongkang Gao Kangda Hao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjing Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1986-1995,共10页
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase... Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding Microstructure homogeneity Mechanical properties
下载PDF
A critical review on solid-state welding of high entropy alloys-processing,microstructural characteristics and mechanical properties of joints
13
作者 Tushar Sonar Mikhail Ivanov +2 位作者 Evgeny Trofimov Aleksandr Tingaev Ilsiya Suleymanova 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期78-133,共56页
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan... The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints. 展开更多
关键词 High entropy alloys Solid state welding MICROSTRUCTURE Mechanical properties
下载PDF
Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy
14
作者 Yujia Shen Jijie Wang +5 位作者 Beibei Wang Peng Xue Fengchao Liu Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2498-2507,共10页
During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties durin... During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance. 展开更多
关键词 friction stir lap welding defect control microstructure fracture mechanisms mechanical properties
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
15
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
下载PDF
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
16
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Effect of V content on microstructures and properties of TiC cermet fusion welding interface
17
作者 魏炜 徐莹 +2 位作者 王旭 黄智泉 刘胜新 《China Welding》 CAS 2024年第1期40-45,共6页
The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert... The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert gas arc(MIG)welding for surfacing on the TiC cermet.The results show that the increase in V content promotes the element diffusion between TiC cermet and weld metal.There are no de-fects observed in the interface,and the diffusion of elements refers to excellent metallurgical bonding.The shear strength of the fusion zone initially decreases and then increases with the increase in V content.The maximum shear strength of the TiC cermet/weld interface,reaching 552 MPa,occurred when the V content reached 0.65%.Meanwhile,the average hardness in the transition zone reached 488.2 HV0.2. 展开更多
关键词 TiC cermet MIG welding INTERFACE V content shear strength
下载PDF
DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection
18
作者 Pengchao Li Fang Xu +3 位作者 Jintao Wang Haibing Guo Mingmin Liu Zhenjun Du 《Computers, Materials & Continua》 SCIE EI 2024年第2期1755-1771,共17页
We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance... We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations. 展开更多
关键词 weld image detection deep learning semantic segmentation depth map geometric feature extraction
下载PDF
Metallurgical Microstructure Complexity in the Electron Beam Welding (EBW) Joint of Ti6246
19
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Roei Saraga Tal Rokah Denis Panchenco Michael Mansano Elinor Itzhaky Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期100-111,共12页
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i... Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone. 展开更多
关键词 Ti Alloys weldING Phase Formation HARDNESS METALLOGRAPHY
下载PDF
Numerical Simulation Analysis of Welded Joints in Arch Ribs of Large Span Steel Pipe Arch Bridges
20
作者 Deer He Nianchun Deng Xiuning Peng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期19-30,共12页
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld... In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion. 展开更多
关键词 steel pipe and concrete arch bridge arch rib multi-pass welding residual stress numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部