This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ...Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The m...In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The main chain is of a flexible open-chain configuration with an end-effector installed at its tip, and the rigid branch links are able to perform active movements. It is proved by kinematics and dynamic analysis that, the branch links bear no direct kinematic relation to the main chain, but their independent motions can strongly affect the dynamic behavior and performance of the flexible manipulator. Then comes a new idea of suppressing vibration, in which independent motions of the branch links are used to suppress the undesired vibration of the flexible main chain through dynamic coupling. On this basis, an optimal method for reducing vibration of flexible manipulators is proposed. Finally, the effectiveness of this method is verified by numerical simulations.展开更多
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ...A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.展开更多
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron...Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.展开更多
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l...It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.展开更多
The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invar...The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.展开更多
Euler angles are commonly used as the orientation representation of most two degrees of freedom(2-DOF) rotational parallel mechanisms(RPMs),as a result,the coupling of two angle parameters leads to complexity of k...Euler angles are commonly used as the orientation representation of most two degrees of freedom(2-DOF) rotational parallel mechanisms(RPMs),as a result,the coupling of two angle parameters leads to complexity of kinematic model of this family of mechanisms.While a simple analytical kinematic model with respect to those parameters representing the geometrical characteristics of the mechanism,is very helpful to improve the performance of RPMs.In this paper,a new geometric kinematic modeling approach based on the concept of instantaneous single-rotation-angle is proposed and used for the 2-DOF RPMs with symmetry in a homo-kinetic plane.To authors' knowledge,this is a new contribution to parallel mechanisms.By means of this method,the forwards kinematics of 2-DOF RPMs is derived in a simple way,and three cases i.e.4-4R mechanism(Omni-wrist III),spherical five-bar one,and 3-RSR1-SS one demonstrate the validity of the proposed geometric method.In addition,a novel 2-DOF RPM architecture with virtual center-of-motion is presented by aid of the same method.The result provides a useful tool for simplifying the model and extending the application of the RPMs.展开更多
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金supported by Natural Science Basic Research Program of Shaanxi(2022JQ-593)Key Research and Development Program of Shaanxi(2022GY-089)。
文摘Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金Ministry of Education Important Research Project of Scienceand Technology of China(307005)National Hi-Tech Research and Development Program of China(SQ2007AA04Z231266)
文摘In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The main chain is of a flexible open-chain configuration with an end-effector installed at its tip, and the rigid branch links are able to perform active movements. It is proved by kinematics and dynamic analysis that, the branch links bear no direct kinematic relation to the main chain, but their independent motions can strongly affect the dynamic behavior and performance of the flexible manipulator. Then comes a new idea of suppressing vibration, in which independent motions of the branch links are used to suppress the undesired vibration of the flexible main chain through dynamic coupling. On this basis, an optimal method for reducing vibration of flexible manipulators is proposed. Finally, the effectiveness of this method is verified by numerical simulations.
文摘A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.
文摘Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.
文摘It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375420,51105322)
文摘The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.
基金supported by National Natural Science Foundation of China (Grant No. 50875008)
文摘Euler angles are commonly used as the orientation representation of most two degrees of freedom(2-DOF) rotational parallel mechanisms(RPMs),as a result,the coupling of two angle parameters leads to complexity of kinematic model of this family of mechanisms.While a simple analytical kinematic model with respect to those parameters representing the geometrical characteristics of the mechanism,is very helpful to improve the performance of RPMs.In this paper,a new geometric kinematic modeling approach based on the concept of instantaneous single-rotation-angle is proposed and used for the 2-DOF RPMs with symmetry in a homo-kinetic plane.To authors' knowledge,this is a new contribution to parallel mechanisms.By means of this method,the forwards kinematics of 2-DOF RPMs is derived in a simple way,and three cases i.e.4-4R mechanism(Omni-wrist III),spherical five-bar one,and 3-RSR1-SS one demonstrate the validity of the proposed geometric method.In addition,a novel 2-DOF RPM architecture with virtual center-of-motion is presented by aid of the same method.The result provides a useful tool for simplifying the model and extending the application of the RPMs.